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Chapter 2: Data Warehousing 
and OLAP Technology for Data Mining

What is a data warehouse? 

A multi-dimensional data model

Data warehouse architecture
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What is a Data Warehouse?

Defined in many different ways, but not rigorously.
• A decision support database that is maintained separately from 

the organization’s operational database(s)

Data warehousing:
• The process of constructing and using data warehouses

Data 
Warehouse

Extract
Transform
Load
Refresh

Operational 
DBs

daily business
operations

business analysis for
strategic planning

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 2004

What is a Data Warehouse?

Support information processing by providing a 
solid platform of consolidated, historical data for 
analysis.

“A data warehouse is a subject-oriented, 
integrated, time-variant, and nonvolatile
collection of data in support of management’s 
decision-making process.”—W. H. Inmon
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Data Warehouse: Subject-Oriented

Organized around major subjects, such as customer, 

product, sales.

Focusing on the modeling and analysis of data for 

decision makers, not on daily operations or transaction 

processing.

Provide a simple and concise view around particular 

subject issues by excluding data that are not useful in 

the decision support process.
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Data Warehouse: Integrated

Constructed by integrating multiple, heterogeneous data 
sources

• relational databases, flat files, on-line transaction 
records

Data cleaning and data integration techniques are 
applied.

• Ensure consistency in naming conventions, encoding 
structures, attribute measures, etc. among different 
data sources

o E.g., Hotel price: currency, tax, breakfast covered, etc.
• When data is moved to the warehouse, it is converted.  
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Data Warehouse: Time Variant

The time horizon for the data warehouse is significantly 
longer than that of operational systems.

• Operational database: current value data.

• Data warehouse data: provide information from a 
historical perspective (e.g., past 5-10 years)

Every key structure in the data warehouse

• Contains an element of time, explicitly or implicitly

• The key of the original operational data may or may 
not contain an explicit “time element”.
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Data Warehouse: Non-Volatile

A physically separate store of data transformed from the 

operational environment.

Operational update of data does not occur in the data 

warehouse environment.

• Does not require transaction processing, recovery, 

and concurrency control mechanisms

• Requires only two operations in data accessing: 

o initial loading of data and access of data.
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Data Warehouse vs. Heterogeneous DBMS

Traditional heterogeneous DB integration: 
• Build wrappers/mediators on top of heterogeneous databases 

• Query driven approach

o Distribute a query to the individual heterogeneous sites; a 
meta-dictionary is used to translate the queries accordingly

o Integrate the results into a global answer set

Data warehouse: update-driven
• Information from heterogeneous sources is integrated in advance 

and stored in warehouses for direct query and analysis
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Data Warehouse vs. Operational DBMS

OLTP (on-line transaction processing)

• Major task of traditional relational DBMS

• Day-to-day operations: purchasing, inventory, banking, 
manufacturing, payroll, registration, accounting, etc.

OLAP (on-line analytical processing)

• Major task of data warehouse system

• Data analysis and decision making

Distinct features (OLTP vs. OLAP):

• User and system orientation: customer  vs.  market

• Data contents: current & detailed  vs.  historical & consolidated

• Database design: ER + application  vs.  star schema + subject

• View: current & local  vs.  evolutionary & integrated

• Access patterns: update  vs.  read-only but complex queries
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OLTP vs. OLAP

 OLTP OLAP 
users clerk, IT professional knowledge worker 

function day to day operations decision support 

DB design application-oriented subject-oriented 

data current, up-to-date 
detailed, flat relational 
isolated 

historical,  
summarized, multidimensional 
integrated, consolidated 

usage repetitive ad-hoc 

access read/write 
index/hash on prim. key 

lots of scans 

unit of work short, simple transaction complex query 

# records 
accessed 

tens millions 

# users thousands hundreds 

DB size 100MB-GB 100GB-TB 

metric transaction throughput query throughput, response 
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Chap. 2: Data Warehousing 
and OLAP Technology for Data Mining

What is a data warehouse? 

A multi-dimensional data model

Data warehouse architecture
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From Tables and 
Spreadsheets to Data Cubes

A data warehouse is based on a multidimensional data model
which views data in the form of a data cube

A data cube, such as sales, allows data to be modeled and 
viewed in multiple dimensions

• Dimension tables, such as item (item_name, brand, type), or
time(day, week, month, quarter, year) 

• A Fact table that contains
o measures (dependent attributes, e.g., dollars_sold) and

o keys to each of the related dimension tables (dimensions, 
independent attributes)
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Dimensions form Concept Hierarchies
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Multidimensional Data

Sales volume as a function of product, month, 
and region
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Dimensions: Product, Location, Time
Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

Office         Day
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Cube as a Lattice of Cuboids

In data warehousing literature, an n-D base cube is called a base cuboid. 
The top most 0-D cuboid, which holds the highest-level of summarization, 
is called the apex cuboid. The lattice of cuboids forms a data cube.

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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A Sample Data Cube
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Browsing a Data Cube

Visualization
OLAP capabilities
Interactive manipulation
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Conceptual Modeling of Data Warehouses

Modeling data warehouses: dimensions & measures

• Star schema: A fact table in the middle 

connected to a set of dimension tables

• Snowflake schema:  A refinement of 

star schema where some dimensional 

hierarchy is normalized into a set of 

smaller dimension tables, forming a 

shape similar to snowflake

• Fact constellations:  Multiple fact tables share dimension tables, i.e., 

a collection of stars, called galaxy schema or fact constellation
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Example of Star Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
province_or_state
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch
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Example of Snowflake Schema

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city_key

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

Measures

item_key
item_name
brand
type
supplier_key

item

branch_key
branch_name
branch_type

branch

supplier_key
supplier_type

supplier

city_key
city
province_or_state
country

city
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Example of Fact Constellation

time_key
day
day_of_the_week
month
quarter
year

time

location_key
street
city
province_or_state
country

location

Sales Fact Table

time_key

item_key

branch_key

location_key

units_sold

dollars_sold

Measures

item_key
item_name
brand
type
supplier_type

item

branch_key
branch_name
branch_type

branch

Shipping Fact Table

time_key

item_key

shipper_key

from_location

to_location

dollars_cost

units_shipped

shipper_key
shipper_name
location_key
shipper_type

shipper
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Measures: Three Categories

distributive: if the result derived by applying the function 
to n aggregate values is the same as that derived by 
applying the function on all the data without partitioning.

o E.g., count(), sum(), min(), max().

algebraic: if it can be computed by an algebraic function 
with M arguments (where M is a bounded integer), each 
of which is obtained by applying a distributive aggregate 
function.

o E.g., avg() = sum() / count(); standard_deviation().

holistic: if there is no constant bound on the storage size 
which is needed to determine / describe a subaggregate.

o E.g., median(), mode(), rank() [see next slide]
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Measures: Examples

Distributive Measures
• count (D1 ∪ D2) = count (D1) + count (D2)
• sum (D1 ∪ D2) = sum (D1) + sum (D2)
• min (D1 ∪ D2) = min (min (D1), min (D2))
• max (D1 ∪ D2) = max (max (D1), max (D2))

Algebraic Measures
• avg (D1 ∪ D2) = sum (D1 ∪ D2) / count (D1 ∪ D2)

= (sum (D1) + sum (D2)) / (count (D1) + count (D2))

Holistic Measures
• median: value in the middle of a sorted series of values (= 50% quantile)
• mode: value that appears most often in a set of values
• rank: k-smallest / k-largest value (cf. quantiles, percentiles)
• median (D1 ∪ D2) ≠ simple_function (median (D1) + median (D2))
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Typical OLAP Operations

Roll up (drill-up): summarize data
• by climbing up hierarchy or by dimension reduction

Drill down (roll down): reverse of roll-up
• from higher level summary to lower level summary or detailed 

data, or introducing new dimensions
Slice and dice:

• selection on one (slice) or more (dice) dimensions
Pivot (rotate):

• reorient the cube, visualization, 3D to series of 2D planes
Other operations

• drill across: involving (across) more than one fact table
• drill through: through the bottom level of the cube to its back-

end relational tables (using SQL)
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A Star-Net Query Model

Shipping Method
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Each circle is 
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Chap. 2: Data Warehousing 
and OLAP Technology for Data Mining

What is a data warehouse? 

A multi-dimensional data model

Data warehouse architecture
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Why Separate Data Warehouse?

High performance for both systems, OLTP and OLAP

DBMS — tuned for OLTP
• access methods
• indexing
• concurrency control
• recovery

Warehouse — tuned for OLAP
• complex OLAP queries
• multidimensional view
• consolidation
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Design of a Data Warehouse: 
A Business Analysis Framework

Four views regarding the design of a data warehouse 

• Top-down view
o allows selection of the relevant information necessary for the 

data warehouse

• Data source view
o exposes the information being captured, stored, and 

managed by operational systems

• Data warehouse view
o consists of fact tables and dimension tables

• Business query view
o sees the perspectives of data in the warehouse from the view 

of end-user
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Data Warehouse Design Process 

Top-down, bottom-up approaches or a combination of both
• Top-down: Starts with overall design and planning (mature)
• Bottom-up: Starts with experiments and prototypes (rapid)

From software engineering point of view
• Waterfall: structured and systematic analysis at each step before 

proceeding to the next
• Spiral:  rapid generation of increasingly functional systems, short 

turn around time, quick turn around
Typical data warehouse design process

• Choose a business process to model, e.g., orders, invoices, etc.
• Choose the grain (atomic level of data) of the business process
• Choose the dimensions that will apply to each fact table record
• Choose the measure that will populate each fact table record
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Multi-Tiered Architecture

Data
Warehouse

Extract
Transform
Load
Refresh

OLAP Engine

Analysis
Query
Reports
Data mining

Monitor
&

Integrator
Metadata

Data Sources Front-End Tools

Serve

Data Marts

Operational
DBs

other
sources

Data Storage

OLAP Server
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Three Data Warehouse Models

Enterprise warehouse
• collects all of the information about subjects spanning 

the entire organization
Data Mart

• a subset of corporate-wide data that is of value to a 
specific groups of users.  Its scope is confined to 
specific, selected groups, such as marketing data mart

o Independent vs. dependent (directly from warehouse) data mart

Virtual warehouse
• A set of views over operational databases
• Only some of the possible summary views may be 

materialized
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OLAP Server Architectures

Relational OLAP (ROLAP)
• Use relational or extended-relational DBMS to store and manage 

warehouse data and OLAP middle ware to support missing pieces
• Include optimization of DBMS backend, implementation of 

aggregation navigation logic, and additional tools and services
• greater scalability (?)

Multidimensional OLAP (MOLAP) 
• Array-based multidimensional storage engine (sparse matrix 

techniques)
• fast indexing to pre-computed summarized data

Hybrid OLAP (HOLAP)
• User flexibility, e.g., low level: relational, high-level: array
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Data Warehouse Back-End Tools and Utilities

Data extraction
• get data from multiple, heterogeneous, and external sources

Data cleaning
• detect errors in the data and rectify them when possible

Data transformation
• convert data from legacy or host format to warehouse format

Load
• sort, summarize, consolidate, compute views, check integrity, and 

build indices and partitions

Refresh
• propagate the updates from the data sources to the warehouse
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Summary

Data warehouse
• A subject-oriented, integrated, time-variant, and nonvolatile

collection of data in support of management’s decision-
making process

A multi-dimensional model of a data warehouse
• Star schema, snowflake schema, fact constellations

• A data cube consists of dimensions & measures

OLAP operations

• drilling, rolling, slicing, dicing and pivoting
OLAP servers

• ROLAP, MOLAP, HOLAP
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Data Preprocessing

Why preprocess the data?

Data cleaning 

Data integration and transformation

Data reduction

Discretization and concept hierarchy generation

Summary
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Why Data Preprocessing?

Data in the real world is dirty
• incomplete: lacking attribute values, lacking certain attributes of 

interest, or containing only aggregate data
• noisy: containing errors or outliers
• inconsistent: containing discrepancies in codes or names

No quality data, no quality mining results!
• Quality decisions must be based on quality data
• Data warehouse needs consistent integration of quality data
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Multi-Dimensional Measure of Data Quality

A well-accepted multidimensional view:
• Accuracy (range of tolerance)
• Completeness (fraction of missing values)
• Consistency (plausibility, presence of contradictions)
• Timeliness (data is available in time; data is up-to-date)
• Believability (user’s trust in the data; reliability)
• Value added (data brings some benefit)
• Interpretability (there is some explanation for the data)
• Accessibility (data is actually available)

Broad categories:
• intrinsic, contextual, representational, and accessibility.
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Major Tasks in Data Preprocessing

Data cleaning
• Fill in missing values, smooth noisy data, identify or remove 

outliers, and resolve inconsistencies

Data integration
• Integration of multiple databases, data cubes, or files

Data transformation
• Normalization and aggregation

Data reduction
• Obtains reduced representation in volume but produces the same or 

similar analytical results

Data discretization
• Part of data reduction but with particular importance, especially for 

numerical data
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Data Preprocessing

Why preprocess the data?

Data cleaning

Data integration and transformation

Data reduction

Discretization and concept hierarchy generation

Summary
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Data Cleaning

Data cleaning tasks

• Fill in missing values

• Identify outliers and smooth out noisy data 

• Correct inconsistent data
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Missing Data

Data is not always available
• E.g., many tuples have no recorded value for several attributes,

such as customer income in sales data

Missing data may be due to
• equipment malfunction

• inconsistent with other recorded data and thus deleted

• data not entered due to misunderstanding

• certain data may not be considered important at the time of entry

• not register history or changes of the data

Missing data may need to be inferred.
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How to Handle Missing Data?

Ignore the tuple: usually done when class label is missing (not effective 

when the percentage of missing values per attribute varies considerably.

Fill in the missing value manually: tedious (i.e., boring & time-

consuming), infeasible?

Use a global constant to fill in the missing value: e.g., a default value, or 

“unknown”, a new class?! – not recommended!

Use the attribute mean (average value) to fill in the missing value

Use the attribute mean for all samples belonging to the same class to fill 

in the missing value: smarter

Use the most probable value to fill in the missing value: inference-based 

such as Bayesian formula or decision tree



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 2046

Noisy Data

Noise: random error or variance in a measured variable
Incorrect attribute values may due to

• faulty data collection instruments
• data entry problems
• data transmission problems
• technology limitation
• inconsistency in naming convention 

Other data problems which requires data cleaning
• duplicate records
• incomplete data
• inconsistent data
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How to Handle Noisy Data?

Binning method:
• first sort data and partition into (equi-depth) bins
• then one can smooth by bin means,  smooth by bin median, 

smooth by bin boundaries, etc.

Clustering
• detect and remove outliers

Combined computer and human inspection
• detect suspicious values and check by human

Regression
• smooth by fitting the data into regression functions
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Noisy Data—Simple Discretization (1)

Equi-width (distance) partitioning:
• It divides the range into N intervals of equal size: uniform grid
• if A and B are the lowest and highest values of the attribute, the 

width of intervals will be: W = (B-A)/N.
• The most straightforward
• Shortcoming: outliers may dominate 

presentation
• Skewed data is not handled well.

Example (data sorted, here: 10 bins):
5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 
14, 15, 17, 17, 17, 18, 19, 23, 24, 
25, 26, 26, 26, 27, 28, 32, 34, 36, 
37, 38, 39, 97

Second example: same data set, insert 1023

1-200   201-400   401-600   …   1001-1200

5

12

8

6

0 0 0 0 0
1

0
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4

6

8

10

12

 1
-1

0
 1

1-
20

21
-3

0
31

-4
0

41
-5

0
51

-6
0

61
-7

0
71

-8
0

81
-9

0
91

-1
00
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Noisy Data—Simple Discretization (2)

Equi-height (equi-depth, frequency) partitioning:
• It divides the range into N intervals, each containing approximately 

same number of samples (quantile-based approach)
• Good data scaling
• Managing categorical attributes 

can be tricky.

Same Example (here: 4 bins):
5, 7, 8, 8, 9, 11, 13, 13, 14, 14, 
14, 15, 17, 17, 17, 18, 19, 23, 24, 
25, 26, 26, 26, 27, 28, 32, 34, 34, 
36, 37, 37, 38, 39, 97

Median = 50%-quantile
• is more robust against outliers (cf. value 1023 from above)
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14 -
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27 -
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8 8 8 8
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V-optimal Histograms (1)

V-Optimal: (variance optimal)

• Given a fixed number N of buckets, the sum ΣnjVj of weighted
variances is minimized, where nj is the number of elements in 
the j-th bucket and Vj is the variance of the source values
(frequencies) in the j-th bucket.

• Formally: 
o Minimize

where N number of buckets
lbi, ubi lower and upper bounds of i-th bucket
f(j) number of occurrence of the value j
avgi average of frequencies occurring in ith bucket

V. Poosala, Y. E. Ioannidis, P. J. Haas, E. J. Shekita: Improved Histograms for Selectivity
Estimation of Range Predicates. Proc. ACM SIGMOD Conf. 1996: 294-305 
H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K.C. Sevcik, T. Suel, Optimal 
histograms with quality guarantees. Proc. VLDB Conf. 1998: 275-286
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V-optimal Histograms (2)

Example: 
• Equi-depth histogram: frequency

- 1, 2 = 1 + 4 = 5
- 3, 4, 5 = 4 + 0 + 1 = 5
- 6, 7, 8, 9, 10 = 0 + 2 + 0 + 1 + 2 = 5

• V-optimal histogram: variance
- Bucket 1: (1-1)2= 0
- Bucket 2: (4-4)2+(4-4)2 = 0
- Bucket 3: (0-6/7)2+(1-6/7)2 +(0-6/7)2 +(2-6/7)2+(0-6/7)2+(1-6/7)2

+(2-6/7)2= 4,9
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Noisy Data –
Binning Methods for Data Smoothing

*  Sorted data for price (in dollars):
4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

*  Partition into (equi-depth) bins:
- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

*  Smoothing by bin means:
- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

*  Smoothing by bin boundaries:
- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34

0
5

10
15
20
25
30
35

bin means

0
5

10
15
20
25
30
35

price [US$]

0

5

10

15

20

25

30

35

bin boundaries

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 2053

Noisy Data—Cluster Analysis

Detect and remove outliers
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Noisy Data—Regression

x

y

y = x + 1

X1

Y1

Y1’

Smooth data 
according to some
regression function
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Data Preprocessing

Why preprocess the data?

Data cleaning 

Data integration and transformation

Data reduction

Discretization and concept hierarchy generation

Summary
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Data Integration

Data integration: 
• combines data from multiple, heterogeneous sources into a 

coherent store

Schema integration
• integrate metadata from different sources
• Entity identification problem: identify real world entities from

multiple data sources, e.g., A.cust-id ≡ B.cust-#

Detecting and resolving data value conflicts
• for the same real world entity, attribute values from different 

sources are different
• possible reasons: different representations, different scales, e.g., 

metric vs. British units
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Handling Redundant Data in Data Integration

Redundant data occur often when integrating multiple 
databases

• The same attribute may have different names in different 
databases

• One attribute may be a “derived” attribute in another table, e.g., 
birthday vs. age; annual revenue

Redundant data may be able to be detected by 
correlational analysis

Careful integration of the data from multiple sources may 
help reduce/avoid redundancies and inconsistencies and 
improve mining speed and quality
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Data Transformation

Smoothing: remove noise from data
Aggregation: summarization, data cube construction
Generalization: concept hierarchy climbing

• e.g., {young, middle-aged, senior} rather than {1…100}

Normalization: scaled to fall within a small, specified range
• min-max normalization
• z-score normalization (= zero-mean normalization)
• normalization by decimal scaling

Attribute/feature construction
• New attributes constructed from the given ones

e.g., age = years(current_date – birthday)
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Data Transformation: min-max Normalization

min-max normalization

transforms data linearly to a new range
• range outliers may be detected afterwards as well
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Data Transformation: zero-mean Normalization

zero-mean (z-score) normalization

• Leads to mean = 0, std_dev = 1

Particularly useful if
• min/max values are unknown
• Outliers dominate min/max normalization
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Data Transformation: 
Normalization by Decimal Scaling

Normalization by decimal scaling

where j is the smallest integer such that max(|ν’|) < 1

New data range:   0 <= |ν’| < 1   i.e., –1 < ν’ < 1
Note that 0.1 ≤ max(|ν’|)

Normalization (in general) is important when considering 
several attributes in combination.

• Large value ranges should not dominate small ones of other 
attributes

• Example: age 0 … 100 0 … 1; income 0 … 1.000.000 0 … 1

j

vv
10

'=
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Data Preprocessing

Why preprocess the data?

Data cleaning 

Data integration and transformation

Data reduction

Discretization and concept hierarchy generation

Summary
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Data Reduction Strategies

Warehouse may store terabytes of data: Complex data 
analysis/mining may take a very long time to run on the 
complete data set

Data reduction 
• Obtains a reduced representation of the data set that is much 

smaller in volume but yet produces the same (or almost the same)
analytical results

Data reduction strategies
• Data cube aggregation
• Dimensionality reduction
• Numerosity reduction
• Discretization and concept hierarchy generation
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Data Cube Aggregation

The lowest level of a data cube
• the aggregated data for an individual entity of interest

• e.g., a customer in a phone calling data warehouse.

Multiple levels of aggregation in data cubes
• Further reduce the size of data to deal with

Reference appropriate levels
• Use the smallest representation which is enough to solve the task

Queries regarding aggregated information should be 
answered using data cube, when possible
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Dimensionality Reduction

Feature selection (i.e., attribute subset selection):
• Select a minimum set of features such that the probability 

distribution of different classes given the values for those features is 
as close as possible to the original distribution given the values of 
all features

• reduce number of patterns in the patterns, easier to understand

Heuristic methods (due to exponential # of choices):
• step-wise forward selection
• step-wise backward elimination
• combining forward selection and backward elimination
• decision-tree induction
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Initial attribute set:
{A1, A2, A3, A4, A5, A6} A4 ?

A1? A6?

Class 1 Class 2 Class 1 Class 2

> Reduced attribute set:  {A1, A4, A6}

Example of Decision Tree Induction
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Heuristic Feature Selection Methods

There are 2d possible sub-features of d features

Several heuristic feature selection methods:
• Best single features under the feature independence assumption: 

choose by significance tests.

• Best step-wise feature selection: 
o The best single-feature is picked first
o Then next best feature condition to the first, ...

• Step-wise feature elimination:
o Repeatedly eliminate the worst feature

• Best combined feature selection and elimination
• Optimal branch and bound:

o Use feature elimination and backtracking
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Data Compression

String compression
• There are extensive theories and well-tuned algorithms
• Typically lossless
• (Limited) manipulation is possible without expansion

Audio/video compression
• Typically lossy compression, with progressive refinement (e.g., 

based on Fourier transform)
• Sometimes small fragments of signal can be reconstructed 

without reconstructing the whole

Time sequence is not audio
• Typically short and vary slowly with time
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Data Compression

Original Data
Compressed 

Data
lossless

Original Data
Approximated 

lossy
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Wavelet Transforms 

Discrete wavelet transform (DWT):
linear signal processing 

Compressed approximation: store only a small fraction of the strongest 
of the wavelet coefficients

Similar to discrete Fourier transform (DFT), but better lossy compression, 
localized in space

Method:
• Length, L, must be an integer power of 2 (padding with 0s, when necessary)

• Each transform has 2 functions: smoothing, difference

• Applies to pairs of data, resulting in two set of data of length L/2

• Applies two functions recursively, until reaches the desired length

Haar2 Daubechies4
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Given N data vectors from k-dimensions, find c <= k 
orthogonal vectors that are best used to represent data

• The original data set is reduced to one consisting of N data vectors 
on c principal components (reduced dimensions) 

Each data vector is a linear combination of the c principal 
component vectors

Works for numeric data only

Used when the number of dimensions is large

PCA is also known as Karhunen-Loéve Transform (KLT) or 
Singular Value Decomposition (SVD)

Principal Component Analysis (PCA) 
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PCA—Example

Old axes: X1, X2
new axes: Y1, Y2

X1

X2

Y1
Y2
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PCA—Computation

Normalization
• Adapt value ranges of the dimensions
• Move mean values (center of mass) to origin

Compute principal components by a numerical method
• Eigenvectors and Eigenvalues of covariance matrix
• May use Singular Value Decomposition (SVD)

Use the PC´s for a base transformation of the data
• Basic linear algebra operation: multiply matrix to data

PC´s are sorted in decreasing significance (variance)
• Use first PC´s as a reduced coordinate system
• Discard less significant PC directions
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Reduction by Random Projection

Characteristics of PCA
• Optimal reconstruction of data (wrt. linear error)
• Computation of PCs is O(n d 3) for n points, d dimensions
• Data transformation is O(ndk) for k reduced dimensions

Random Projection
• Randomly choose k vectors in d dimensions to form a new base
• The new k-dimensional base is not necessarily orthogonal

Characteristics of Random Projections
• Fast precomputation O(dk), Data transformation is O(ndk)
• Reconstruction quality of data is reported to be very good
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Numerosity Reduction

Parametric methods
• Assume the data fits some model, estimate model parameters, 

store only the parameters, and discard the data (except possible
outliers)

• Log-linear models: obtain value at a point in m-D space as the 
product on appropriate marginal subspaces 

Non-parametric methods
• Do not assume models

• Major families: histograms, clustering, sampling 
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Linear Regression

Basic Idea: Data are modeled to fit a straight line

Approach: Y = α + β X
• Two parameters , α and β specify the line and are to be 

estimated by using the data at hand.
• Fit the line by applying the least squares method to the known 

values of Y1, Y2, …, X1, X2, ….

X

Y
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Multiple Regression

Basic idea: allows a response variable Y to be modeled 
as a linear function of multidimensional feature vector

Example: fit Y = b0 + b1 X1 + b2 X2 to data (X1, X2, Y’ )
• Many nonlinear functions can be transformed into the above, 

e.g.,  X1 = f1 (v1, v2, v3), X2 = f2(v1, v2, v3), i.e., model is fit to 4D 
data (v1, v2, v3 , z)

• The parameters b0, b1, b2  are determined by the least-squares 
method 
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Log-linear Model

Basic idea
• Approximate discrete multi-dimensional probability distributions by 

using lower-dimensional data

Approach
• The multi-way table of joint probabilities is approximated by a 

product of lower-order tables.
• Combine values of marginal distributions (higher degree of 

aggregation, “margin” of a cube, coarse cuboid) to approximate 
less aggregated values (“interior” cell in a data cube, fine-grained 
cuboid)
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Histograms

A popular data reduction technique
Divide data into buckets and store average (sum) for each 
bucket
Related to quantization problems.
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Clustering

Partition data set into clusters, and one can store cluster 
representation only

Can be very effective if data is clustered but not if data is 
“smeared”

Can have hierarchical clustering and be stored in multi-
dimensional index tree structures

There are many choices of clustering definitions and 
clustering algorithms, see later
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Sampling

Allow a mining algorithm to run in complexity that is 
potentially sub-linear to the size of the data

Choose a representative subset of the data
• Simple random sampling may have very poor performance in the 

presence of skew

Develop adaptive sampling methods
• Stratified sampling: 

o Approximate the percentage of each class (or subpopulation of 
interest) in the overall database 

o Used in conjunction with skewed data

Sampling may not reduce database I/Os (page at a time).
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SRSWOR

(simple random

sample without 

replacement)

SRSWR

Raw Data

Sampling
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Sampling

Raw Data Cluster/Stratified Sample
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Hierarchical Reduction

Use multi-resolution structure with different degrees of 
reduction
Hierarchical clustering is often performed but tends to 
define partitions of data sets rather than “clusters”
Parametric methods are usually not compatible with 
hierarchical representation
Hierarchical aggregation 

• An index tree hierarchically divides a data set into partitions by 
value range of some attributes

• Each partition can be considered as a bucket
• Thus an index tree with aggregates stored at each node is a 

hierarchical histogram
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Example of an Index Tree

Different level histograms: 5 bins, 20 bins, …
Approximation of equi-depth (“similar-depth”) histograms

98     339     839     954

986   …   997382  521  767101  123  17823  47   90 876 … 930
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Data Preprocessing

Why preprocess the data?

Data cleaning 

Data integration and transformation

Data reduction

Discretization and concept hierarchy generation

Summary
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Discretization

Three types of attributes:
• Categorical (nominal) — values from an unordered set
• Ordinal — values from an ordered set
• Continuous — real numbers

Discretization: 
• divide the range of a continuous attribute into intervals
• Some classification algorithms only accept categorical attributes.
• Reduce data size by discretization
• Prepare for further analysis

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 2088

Discretization and Concept Hierachy

Discretization
• reduce the number of values for a given continuous attribute 

by dividing the range of the attribute into intervals. Interval 
labels can then be used to replace actual data values.

Concept hierarchies
• reduce the data by collecting and replacing low level concepts 

(such as numeric values for the attribute age) by higher level 
concepts (such as young, middle-aged, or senior).
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Discretization and concept hierarchy 
generation for numeric data

Binning (see above)

Histogram analysis (see above)

Clustering analysis (see later)

Entropy-based discretization

Segmentation by natural partitioning



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 2090

Entropy-Based Discretization

Given a set of samples S, if S is partitioned into two intervals S1 and S2

using boundary T, the entropy after partitioning is

The boundary that minimizes the entropy function over all possible 
boundaries is selected as a binary discretization.

Thus, the Information Gain I(S,T) is maximized:

The process is recursively applied to partitions obtained until some 
stopping criterion is met, e.g., I(S,T) > δ

Experiments show that it may reduce data size and improve 
classification accuracy
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Segmentation by natural partitioning

3-4-5 rule can be used to segment numeric data into 
relatively uniform, “natural” intervals.

• If an interval covers 3, 6, 7 or 9 distinct values at the most 
significant digit, partition the range into 3 equi-width intervals

• If it covers 2, 4, or 8 distinct values at the most significant digit, 
partition the range into 4 intervals

• If it covers 1, 5, or 10 distinct values at the most significant digit, 
partition the range into 5 intervals
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Example of 3-4-5 rule
Given data:

First step:
• 90%-extraction: Low (5%-tile) = -$159, High (95%-tile) = $1,838
• most significant digit = 1,000 set Low = –$1,000 and High = $2,000
• 3 classes

Refinement:
include original Min/Max (-$400 -$5,000)

(-$400 - 0)    (0 - $1,000) ($1,000 - $2, 000) ($2,000 - $5, 000)

-$351  -$159    0 $1,838 $4,700 profit
Min      Low High Max

count

(-$1,000  - $2,000)

(-$1,000 - 0) (0 -$ 1,000) ($1,000 - $2,000)
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Example of 3-4-5 rule—Result

(-$400 -$5,000)

(-$400 - 0)

(-$400 -
-$300)

(-$300 -
-$200)

(-$200 -
-$100)

(-$100 -
0)

(0 - $1,000)

(0 -
$200)
($200 -
$400)

($400 -
$600)

($600 -
$800) ($800 -

$1,000)

($2,000 - $5, 000)

($2,000 -
$3,000)

($3,000 -
$4,000)

($4,000 -
$5,000)

($1,000 - $2, 000)

($1,000 -
$1,200)

($1,200 -
$1,400)

($1,400 -
$1,600)

($1,600 -
$1,800) ($1,800 -

$2,000)
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Concept hierarchy generation 
for categorical data

Alternative approaches to specify concept hierarchies by 
users or experts:

• Specify a partial ordering of attributes explicitly at the schema 
level

e.g., street < city < province_or_state < country

• Specify a portion of a hierarchy by explicit data grouping
e.g., {Sweden, Norway, Finland, Danmark} ⊂ Scandinavia,

{Scandinavia, Baltics, Central Europe, …} ⊂ Europe

• Specify a set of attributes, but not their partial ordering
e.g., {street, city, province_or_state, country}

• Specify only a partial set of attributes
e.g., {city}
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Specification of a set of attributes

Concept hierarchy 
• can be automatically generated based on the number of distinct 

values per attribute in the given attribute set
• the attribute with the most distinct values is placed at the lowest 

level of the hierarchy

• Counter example: 20 distinct years, 12 months, 7 days_of_the_week
but not „year < month < days_of_the_week“ with the latter on top

country

province_or_ state

city

street

15 distinct values

65 distinct values

3567 distinct values

674,339 distinct values
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Data Preprocessing

Why preprocess the data?

Data cleaning 

Data integration and transformation

Data reduction

Discretization and concept hierarchy generation

Summary

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 2097

Summary

Data  preparation is a big issue for both warehousing 

and mining

Data preparation includes

• Data cleaning and data integration

• Data reduction and feature selection

• Discretization

A lot a methods have been developed but still an active 

area of research
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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What is Clustering?What is Clustering?

Grouping a set of data objects into clusters
• Cluster: a collection of data objects

o Similar to one another within the same clustero Similar to one another within the same cluster
o Dissimilar to the objects in other clusters

Clustering = unsupervised classification (no predefined classes)
Typical usage

• As a stand-alone tool to get insight into data distribution 
• As a preprocessing step for other algorithms• As a preprocessing step for other algorithms
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Measuring SimilarityMeasuring Similarity

To measure similarity, often a distance function dist is used
• Measures “dissimilarity” between pairs objects x and y

o Small distance dist(x, y): objects x and y are more similaro Small distance dist(x, y): objects x and y are more similar
o Large distance dist(x, y): objects x and y are less similar

Properties of a distance function
• dist(x, y) ≥ 0 (positive semidefinite)
• dist(x, y) = 0 iff x = y (definite)  (iff = if and only if)

dist(x y) = dist(y x) (symmetry)• dist(x, y) = dist(y, x) (symmetry)
• If dist is a metric, which is often the case:

dist(x, z) ≤ dist(x, y) + dist(y, z)  (triangle inequality)

Definition of a distance function is highly application dependent
• May require standardization/normalization of attributes

Diffe ent definition fo inte l led boole n tego i l o din l• Different definitions for interval-scaled, boolean, categorical, ordinal 
and ratio variables
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Example distance functions (1)Example distance functions (1)

For standardized numerical attributes, i.e., vectors x = (x1, ..., xd) and 
y = (y1, ..., yd) from a d-dimensional vector space:

• General Lp-Metric (Minkowski-Distance) p
d

i
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Example distance functions (2)Example distance functions (2)

For categorical attributes: Hamming distance
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For text documents:
• A document D is represented by a vector r(D) of frequencies of the 

= i 1 else1

terms occuring in D, e.g.,

where f (ti, D) is the frequency of term ti in document D
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• The distance between two documents D1 and D2 is defined by the 
cosine of the angle between the two vectors x = r(D1) and y = r(D2):
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• The cosine distance is semi-definite (e.g., permutations of terms)

yx
y

yxdist
⋅

−=
,

1),(

( g p )

( )yxyxyx ,cos, ∠⋅⋅=

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 3007

General Applications of ClusteringGeneral Applications of Clustering 

Pattern Recognition and Image Processing
Spatial Data Analysis 

create thematic maps in GIS (Geographic Information Systems) by• create thematic maps in GIS (Geographic Information Systems) by 
clustering feature spaces

• detect spatial clusters and explain them in spatial data mining
Economic Science (especially market research)
WWW

Documents (Web Content Mining)• Documents (Web Content Mining)
• Web-logs (Web Usage Mining)

BiologyBiology
• Clustering of gene expression data 
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A Typical Application: Thematic MapsA Typical Application: Thematic Maps

Satellite images of a egion in diffe ent a elengthsSatellite images of a region in different wavelengths
• Each point on the surface maps to a high-dimensional feature 

vector p = (x1, …, xd) where xi is the recorded intensity at the p ( 1, , d) i y
surface point in band i.

• Assumption: each different land-use reflects and emits light of 
different wavelengths in a characteristic waydifferent wavelengths in a characteristic way.

• • • •• • • •
• • • • Band 1(12),(17.5)

•Cluster 1
Cluster 2

• • • •
• • • •
• • • •

• • • •
• • • •

12

10

• •• •
•

••• •
••

1 1 1 2

Cluster 1

Cluster 3

(8.5),(18.7)

Surface of the earth Feature space

Band 2
16.5 22.020.018.0
8

••••
1 1 1 2
1 1 2 2
3 2 3 2
3 3 3 3

Cluster 3

Surface of the earth Feature-space
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Application: Web Usage MiningApplication: Web Usage Mining

Determine Web User Groups
Sample content of a web log fileSample content of a web log file

romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:44:50 +0100] "GET /~lopa/ HTTP/1.0" 200 1364
romblon.informatik.uni-muenchen.de lopa - [04/Mar/1997:01:45:11 +0100] "GET /~lopa/x/ HTTP/1.0" 200 712
fixer.sega.co.jp unknown - [04/Mar/1997:01:58:49 +0100] "GET /dbs/porada.html HTTP/1.0" 200 1229

Generation of sessions

scooter.pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] "GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

Session::= <IP_address, user_id, [URL1, . . ., URLk]>

hi h t i f i l i ?which entries form a single session?

Distance function for sessions:
( ) ( )xyyxyxyx

yxd
−∪−

=
∩−∪

=),(Distance function for sessions:
yxyx

yxd
∪∪

),(
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Major Clustering ApproachesMajor Clustering Approaches

Expectation Maximization
Partitioning algorithms

Find k partitions minimizing some objective function• Find k partitions, minimizing some objective function
Hierarchy algorithms 

• Create a hierarchical decomposition of the set of objectsp j
Density-based 

• Find clusters based on connectivity and density functions
b lSubspace Clustering

Other methods
• Grid-based• Grid based
• Neural networks (SOM’s)
• Graph-theoretical methods
• . . .
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Expectation Maximization (EM)Expectation Maximization (EM)

Basic Notions [Dempster, Laird & Rubin 1977]
Consider points p = (x1, ..., xd) from a d-dimensional Euclidean 
vector spacevector space
Each cluster is represented by a probability distribution
Typically: mixture of Gaussian distributionsyp y
Single distribution to represent a cluster C

o Center point µC of all points in the cluster
d d C i t i Σ f th i t i th l t Co d x d Covariance matrix ΣC for the points in the cluster C

Density function for cluster C:

( ) ( ) ( )
( )

( ) ( ) ( )CxCCx T

C
d

eCxP
µµ

π

−⋅∑⋅−⋅

Σ

−

⋅=
1

2
1

2
1)|(
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R11
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R26
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EM: Gaussian Mixture – 2D examplesEM: Gaussian Mixture 2D examples

A single Gaussian 
density function

A Gaussian mixture model, k = 3

R36

R26
R31

R36

1 3 5 7 9

11 13 15 17 19 21 23 25 27 29 31 33 35 37

R1

R6

R11

R16

R21

R26

R31

1 3 5 7 9

11 13 15 17 19 21 23 25 27 29 31 33 35 37

R1

R6

R11

R16

R21

3 3
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EM – Basic NotionsEM Basic Notions

Density function for clustering M = {C1, …, Ck}
• Estimate the a-priori probability of class Ci, P(Ci), by the relative frequency 

Wi, i.e., the fraction of cluster Ci in the entire data set D:i i

Assignment of points to clusters

∑ =
⋅=

k

i
ii CxPWxP

1
)|()(

Assignment of points to clusters
• A point may belong to several clusters with different probabilities P(x|Ci)

cf. Bayes Rule:)|()|( CxPWCP i

Maximize E(M) a measure for the quality of a clustering M

)(
)|()|(

xP
CxPWxCP i

ii ⋅= )()|()()|( iii CPCxPxPxCP ⋅=⋅

Maximize E(M), a measure for the quality of a clustering M
• E(M) indicates the probability that the data D have been generated by 

following the distribution model M

∑ ∈
=

Dx
xPME ))(log()(
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EM – AlgorithmEM Algorithm

ClusteringByExpectationMaximization (point set D, int k)

Generate an initial model M’ = (C1’, …, Ck’)

repeatrepeat
// (re-) assign points to clusters

For each object x from D and for each cluster (= Gaussian) Ci,For each object x from D and for each cluster (  Gaussian) Ci, 
compute P(x|Ci), P(x) and P(Ci|x)

// (re-) compute the models

F h Cl t C t d l M {C C } bFor each Cluster Ci, compute a new model M = {C1, …, Ck} by 
recomputing Wi, µC and ΣC

Replace M’ by Mp y

until |E(M) – E(M’)| < ε

return M
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EM – Recomputation of ParametersEM Recomputation of Parameters

∑1
Weight Wi of cluster Ci

= a-priori probability P(Ci)
∑ ∈

=
Dx ii xCP

n
W )|(1

Center µi of cluster Ci ∑
∑ ∈

⋅
= Dx i

i CP
xCPx
)|(

)|(
µµi i ∑ ∈Dx i xCP )|(

Covariance matrix Σi 
of cluster Ci

( )( )
∑

∑Σ
∈

∈
−−

=
Dx i

Dx
T

iii
i xCP

xxxCP
)|(

)|( µµ

of cluster Ci ∑ ∈Dx
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EM – DiscussionEM Discussion

Convergence to (possibly local) minimum

Computational effort:
O(n k #iterations)• O(n ⋅ k ⋅ #iterations) 

• #iterations is quite high in many cases

Both result and runtime strongly depend on g y p
• the initial assignment

• a proper choice of parameter k (= desired number of clusters)

Modification to obtain a really partitioning variant
• Objects may belong to several clusters

Assign each object to the cluster to which it belongs with the highest• Assign each object to the cluster to which it belongs with the highest 
probability
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Partitioning Algorithms: Basic ConceptPartitioning Algorithms: Basic Concept

Goal: Construct a partition of a database D of n objects into a set of k
clusters minimizing an objective function.

• Exhaustively enumerating all possible partitions into k sets in order 
to find the global minimum is too expensive.

Heuristic methods: 
• Choose k representatives for clusters e g randomly• Choose k representatives for clusters, e.g., randomly
• Improve these initial representatives iteratively:

o Assign each object to the cluster it “fits best” in the current clustering
C t l t t ti b d th i to Compute new cluster representatives based on these assignments

o Repeat until the change in the objective function from one iteration to the 
next drops below a threshold

T f l t t tiTypes of cluster representatives
• k-means: Each cluster is represented by the center of the cluster
• k-medoid: Each cluster is represented by one of its objectsp y j
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods
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• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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K-Means Clustering: Basic IdeaK-Means Clustering: Basic Idea

Objective: For a given k, form k groups so that the sum of the 
(squared) distances between the mean of the groups and their 
elements is minimal.

• Poor Clustering 5
x

x5

51

1 x Centroids
x

1

1

5

• Optimal Clustering
5

x
5

1

5

x Centroids
x

x

1

5

1 51 5
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K-Means Clustering: Basic NotionsK-Means Clustering: Basic Notions 

Objects p = (xp
1, ..., xp

d) are points in a d-dimensional vector space 
(the mean of a set of points must be defined)

Centroid µC: Mean of all points in a cluster C, ∑
∈

=
Cx

iC
i

x
C
1µ

Measure for the compactness („Total Distance“) of a cluster Cj:

∑=
jCj pdistCTD 2),()( µ

Measure for the compactness of a clustering

∑
∈ j

j
Cp

j

Measure for the compactness of a clustering

∑
=

=
k

j
jCTDTD

1

2 )(
j
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K-Means Clustering: AlgorithmK-Means Clustering: Algorithm

Given k, the k-means algorithm is implemented in 4 steps:

1. Partition the objects into k nonempty subsets

2. Compute the centroids of the clusters of the current partition.  

The centroid is the center (mean point) of the cluster.

3. Assign each object to the cluster with the nearest 

representative.  

4. Go back to Step 2, stop when representatives do not change.
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K-Means Clustering: ExampleK-Means Clustering: Example
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K-Means Clustering: DiscussionK-Means Clustering: Discussion

St thStrength 
• Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t  

is # iterations
ll k• Normally: k, t << n

• Easy implementation
Weakness

• Applicable only when mean is defined
• Need to specify k, the number of clusters, in advance
• Sensitive to noisy data and outliersSe s t e to o sy data a d out e s
• Clusters are forced to have convex shapes
• Result and runtime are very dependent on the initial partition; often 

terminates at a local optimum – however: methods for a good p g
initialization exist

Several variants of the k-means method exist, e.g. ISODATA
• Extends k-means by methods to eliminate very small clusters, mergingExtends k means by methods to eliminate very small clusters, merging 

and split of clusters; user has to specify additional parameters
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
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• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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K-Medoid Clustering: Basic IdeaK-Medoid Clustering: Basic Idea

Objective: For a given k, find k representatives in the dataset so 
that, when assigning each object to the closest representative, the 
sum of the distances between representatives and objects which p j
are assigned to them is minimal.
Medoid: representative object “in the middle” (cf. median)

Poor Clustering Optimal ClusteringData Set

5 5 5

1

1

5

Medoid

1

1

1

1

5

Medoid

1 5 1 5 1 5
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K-Medoid Clustering: Basic NotionsK-Medoid Clustering: Basic Notions 

Requires arbitrary objects and a distance function

Medoid mC: representative object in a cluster CMedoid mC: representative object in a cluster C

Measure for the compactness of a cluster C:

Measure for the compactness of a clustering

∑
∈

=
Cp

CmpdistCTD ),()(

Measure for the compactness of a clustering

∑=
k

iCTDTD )(∑
=i 1
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K-Medoid Clustering: PAM AlgorithmK-Medoid Clustering: PAM Algorithm

P titi i A d M d id [K f d R 1990]Partitioning Around Medoids [Kaufman and Rousseeuw, 1990]
Given k, the k-medoid algorithm is implemented in 5 steps:
1. Select k objects arbitrarily as medoids (representatives); j y ( p );

assign each remaining (non-medoid) object to the cluster with 
the nearest representative, and compute TDcurrent.

2. For each pair (medoid M, non-medoid N)2. For each pair (medoid M, non medoid N) 
compute the value TDN↔M, i.e., the value of TD for the partition 
that results when “swapping” M with N

3. Select the non-medoid N for which TDN M is minimal3. Select the non medoid N for which TDN↔M is minimal
4. If TDN↔M is smaller than TDcurrent

Swap N with M
S t TD TDSet TDcurrent := TDN↔M
Go back to Step 2

5. Stop.
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d d Cl C d C SK-Medoid Clustering: CLARA and CLARANS

CLARA [Kaufmann and Rousseeuw,1990]
• Additional parameter: numlocal
• Draws numlocal samples of the data setDraws numlocal samples of the data set
• Applies PAM on each sample
• Returns the best of these sets of medoids as output

CLARANS [Ng and Han, 1994)
• Two additional parameters: maxneighbor and numlocal
• At most maxneighbor many pairs (medoid M, non-medoid N) areAt most maxneighbor many pairs (medoid M, non medoid N) are 

evaluated in the algorithm.
• The first pair (M, N) for which TDN↔M is smaller than TDcurrent is 

swapped (instead of the pair with the minimal value of TD )swapped (instead of the pair with the minimal value of TDN↔M )
• Finding the local minimum with this procedure is repeated 

numlocal times.
Efficiency: runtime(CLARANS) < runtime(CLARA) < runtime(PAM)
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C S S l fCLARANS Selection of Representatives

CLARANS (objects DB, integer k, real dist, integer numlocal, integer maxneighbor)
for r from 1 to numlocal do 

Randomly select k objects as medoidsy j
Let i := 0
while i < maxneighbor do

Randomly select (Medoid M Non medoid N)Randomly select (Medoid M, Non-medoid N)
Compute changeOfTD_:= TDN↔M - TD
if changeOfTD < 0 then

substitute M by N
TD := TDN↔M

i := 0i :  0
else i:= i + 1

if TD < TD_best then
STD_best := TD; Store current medoids

return Medoids
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K-Medoid Clustering: DiscussionK-Medoid Clustering: Discussion

S hStrength
• Applicable to arbitrary objects + distance function
• Not as sensitive to noisy data and outliers as k-means

Weakness
• Inefficient
• Like k-means: need to specify the number of clusters k in advance,Like k means: need to specify the number of clusters k in advance, 

and clusters are forced to have convex shapes
• Result and runtime for CLARA and CLARANS may vary largely due to 

the randomization

20 rectangular 
clusters out of
--- 2000 points

TD(CLARANS)

TD(PAM)

- - 3000 points

TD(PAM)
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Initialization of Partitioning Clustering MethodsInitialization of Partitioning Clustering Methods

[Fayyad, Reina and Bradley 1998]

• Draw m different (small) samples of the dataset

• Cluster each sample to get m estimates for k representatives
A = (A1, A2, . . ., Ak), B = (B1,. . ., Bk), ..., M = (M1,. . ., Mk)

Th l t th t DS A B M ti• Then, cluster the set DS = A ∪ B ∪ … ∪ M m times, 
using the sets A, B, ..., M as respective initial partitioning

Use the best of these m clusterings as initialization for the• Use the best of these m clusterings as initialization for the 
partitioning clustering of the whole dataset
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Initialization of Partitioning Clustering MethodsInitialization of Partitioning Clustering Methods

ExampleExample

D3

A3

C1 B3

C3

D2

D3

A2

A1

B1

C1
B2

C2D1

whole dataset DSwhole dataset
k = 3 m = 4 samples A, B, C, D

true cluster centers 
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Choice of the Parameter kChoice of the Parameter k

Idea for a method: 
• Determine a clustering for each k = 2, ... n-1

Ch th b t“ l t i• Choose the „best“ clustering

But how can we measure the quality of a clustering?
A measure has to be independent of k• A measure has to be independent of k.

• The measures for the compactness of a clustering TD2 and TD are 
monotonously decreasing with increasing value of k.y g g

Silhouette-Coefficient [Kaufman & Rousseeuw 1990]
• Measure for the quality of a k-means or a k-medoid clustering that is 

independent of k.
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The silhouette coefficient (1)The silhouette coefficient (1)

Basic idea: 
• How good is the clustering = how appropriate is the mapping 

of objects to clusters

• Elements in cluster should be „similar“ to their representative 
th di t f bj t t th i t timeasure the average distance of objects to their representative: a

• Elements in different clusters should be „dissimilar“
measure the average distance of objects to alternative clustermeasure the average distance of objects to alternative cluster 
(i.e. second closest cluster): b
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The silhouette coefficient (2)The silhouette coefficient (2)

a(o): average distance between object o and the objects in its cluster A

∑= ),(1)( podist
C

oa

b(o): average distance between object o and the objects in its “second 
closest” cluster B

∑
∈ )(oCpiC
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The silhouette of o is then defined as
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=

The values of the silhouette coefficient range from –1 to +1
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The silhouette coefficient (3)The silhouette coefficient (3)

„Reading“ the silhouette coefficient

• how good is the assignment of o to its cluster

s (o) 1: bad on average closer to members of Bo s (o) = −1: bad, on average closer to members of B
o s (o) = 0: in-between A and B
o s (o) = 1: good assignment of o to its cluster Ao s (o) = 1: good assignment of o to its cluster A

Silhouette Coefficient sC of a clustering: average silhouette of all 
bj tobjects

o 0.7 < sC ≤ 1.0 strong structure, 0.5 < sC ≤ 0.7 medium structure

o 0 25 < s ≤ 0 5 weak structure s ≤ 0 25 no structureo 0.25 < sC ≤ 0.5 weak structure, sC ≤ 0.25 no structure
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Density-Based ClusteringDensity-Based Clustering

Basic Idea:
• Clusters are dense regions in the data 

space, separated by regions of lower p p y g
object density

Why Density-Based Clustering?

Results of a k-Results of a k-
medoid 
algorithm for k=4

Different density-based approaches exist (see Textbook & Papers)
Here we discuss the ideas underlying the DBSCAN algorithmHere we discuss the ideas underlying the DBSCAN algorithm
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Density Based Clustering: Basic ConceptDensity Based Clustering: Basic Concept

Intuition for the formalization of the basic idea
• For any point in a cluster, the local point density around that point has 

to exceed some threshold
• The set of points from one cluster is spatially connected

Local point density at a point p defined by two parameters
 radius for the neighborhood of point q:� ε – radius for the neighborhood of point q:

Nε (q) := {p in data set D | dist(p, q) ≤ ε}
• MinPts – minimum number of points in the given neighbourhood N(p) 

q is called a core object (or core point) w.r.t. ε, MinPts if 
| Nε (q) | ≥ MinPts

ε

MinPts = 5 q is a core object

q
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Density Based Clustering: Basic DefinitionsDensity Based Clustering: Basic Definitions
p

p directly density-reachable from q
w.r.t. ε, MinPts if
1) p ∈ Nε(q)  and 

q

) p ε(q)
2) q is a core object w.r.t. ε, MinPts

p

density-reachable: transitive closure 
of directly density-reachable q

p is density-connected to a point q 
w.r.t. ε, MinPts if there is a point o such 

p

that both, p and q are density-reachable 
from o w.r.t. ε, MinPts. qo
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Density Based Clustering: Basic DefinitionsDensity Based Clustering: Basic Definitions

Density-Based Cluster: non-empty subset S of database D satisfying:
1) Maximality: if p is in S and q is density-reachable from p then q is in S
2) Connectivity: each object in S is density-connected to all other objects2) Connectivity: each object in S is density connected to all other objects

Density-Based Clustering of a database D : {S1, ..., Sn; N} where
• S1, ..., S : all density-based clusters in the database D• S1, ..., Sn : all density based clusters in the database D
• N = D \ {S1, ..., Sn} is called the noise (objects not in any cluster)

N i

Border

Noise

1 0

Core

ε = 1.0

MinPts = 5
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Density Based Clustering: DBSCAN AlgorithmDensity Based Clustering: DBSCAN Algorithm

D it B d S ti l Cl t i f A li ti ith N iDensity Based Spatial Clustering of Applications with Noise
Basic Theorem:

• Each object in a density-based cluster C is density-reachable 
f om an of its co e objectsfrom any of its core-objects

• Nothing else is density-reachable from core objects.

for each o ∈ D dofor each o ∈ D do
if o is not yet classified then  

if o is a core-object then
ll t ll bj t d it h bl fcollect all objects density-reachable from o

and assign them to a new cluster.
else

• density-reachable objects are collected by performing 
successive  ε-neighborhood queries. 

assign o to NOISE

success e ε e g bo ood que es
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DBSCAN Algorithm: ExampleDBSCAN Algorithm: Example

Parameter
o ε = 2.0

MinPts 3o MinPts = 3

for each o ∈ D do
if o is not yet classified then  

if o is a core-object thenj
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE
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DBSCAN Algorithm: ExampleDBSCAN Algorithm: Example

Parameter
o ε = 2.0

MinPts 3o MinPts = 3

for each o ∈ D do
if o is not yet classified then  

if o is a core-object thenj
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE
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DBSCAN Algorithm: ExampleDBSCAN Algorithm: Example

Parameter
o ε = 2.0

MinPts 3o MinPts = 3

for each o ∈ D do
if o is not yet classified then  

if o is a core-object thenj
collect all objects density-reachable from o
and assign them to a new cluster.

else
assign o to NOISE
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DBSCAN Algorithm: PerformanceDBSCAN Algorithm: Performance

Runtime complexity:  O(n * cost for neighborhood query)

Nε-query DBSCAN
2- without support (worst case): O(n) O(n2 )

- tree-based support (e.g. R*-tree) : O(log(n)) O(n ∗ log(n) )
- direct access to the neighborhood: O(1) O(n)

Runtime Comparison: DBSCAN (+ R*-tree) ↔ CLARANS

Time (sec.)
No. of Points 1,252 2,503 3,910 5,213 6,256 7,820 8,937 10,426 12,512 62,584
DBSCAN 3 7 11 16 18 25 28 33 42 233DBSCAN 3 7 11 16 18 25 28 33 42 233
CLARANS 758 3,026 6,845 11,745 18,029 29,826 39,265 60,540 80,638 ?????
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Determining the Parameters ε and MinPtsDetermining the Parameters ε and MinPts

Cl t P i t d it hi h th ifi d b d Mi PtCluster: Point density higher than specified by ε and MinPts
Idea: use the point density of the least dense cluster in the data 
set as parameters – but how to determine this?
Heuristic: look at the distances to the k-nearest neighbors

p
q

3-distance(p) :

3-distance(q) :

Function k-distance(p): distance from p to the its k-nearest

3-distance(q) :

Function k distance(p): distance from p to the its k nearest 
neighbor
k-distance plot: k-distances of all objects, sorted in decreasing 
orderorder
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Determining the Parameters ε and MinPtsDetermining the Parameters ε and MinPts

eExample k-distance plot
1 dim = 2 → MinPts = 3
2 Identify border object 3-

di
st

an
ce

first „valley“ 
2 Identify border object
3 Set ε

Objects

3

Heuristic method:

Objects

„border object“ 

Heuristic method: 
• Fix a value for MinPts
• (default: 2 × d – 1, d = dimension of data space)( , p )
• User selects “border object” o from the MinPts-distance plot;

ε is set to MinPts-distance(o)
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Determining the Parameters ε and MinPtsDetermining the Parameters ε and MinPts

Problematic example

CA C

EF A, B, C

G
G1 D

is
ta

nc
e

B‘, D‘, F, G

B, D, E

B D
D’

B’ D1

G2
G3 3-

D

D1, D2,
G1, G2, G3

D1
D2 Objects
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Density Based Clustering: DiscussionDensity Based Clustering: Discussion

Advantages
• Clusters can have arbitrary shape and size, i.e. clusters are not 

restricted to have convex shapesrestricted to have convex shapes
• Number of clusters is determined automatically
• Can separate clusters from surrounding noisep g
• Can be supported by spatial index structures

DisadvantagesDisadvantages
• Input parameters may be difficult to determine
• In some situations very sensitive to input parameter settingy p p g
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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From Partitioning to Hierarchical ClusteringFrom Partitioning to Hierarchical Clustering

Global parameters to separate all clusters with a partitioning 
clustering method may not exist

hierarchical largely differing

and/or

N d hi hi l l t i l ith i th it ti

hierarchical 
cluster structure

largely differing 
densities and sizes

Need a hierarchical clustering algorithm in these situations
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Hierarchical Clustering: Basic NotionsHierarchical Clustering: Basic Notions

Hierarchical decomposition of the data set (with respect to a given 
similarity measure) into a set of nested clusters 
Result represented by a so called dendrogram (greek δενδρο = tree)Result represented by a so called dendrogram  (greek δενδρο  tree)

• Nodes in the dendrogram represent possible clusters
• can be constructed bottom-up (agglomerative approach) or top 

down (divisive approach)
Step 0 Step 1 Step 2 Step 3 Step 4

agglomerative

b
c

a a b
a b c d e

d
c

e
d e

c d e

e
Step 4 Step 3 Step 2 Step 1 Step 0

divisive
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Hierarchical Clustering: ExampleHierarchical Clustering: Example

Interpretation of the dendrogram
• The root represents the whole data set
• A leaf represents a single objects in the data set• A leaf represents a single objects in the data set
• An internal node represent the union of all objects in its sub-tree
• The height of an internal node represents the distance between its 

h ld dtwo child nodes 

8 9

distance
between
l t

2

5

2 4 6

7
8 9

1

clusters

1
1

3 5

0
1 5 1 2 3 4 5 6 7 8 9

0
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Density-Based Hierarchical ClusteringDensity-Based Hierarchical Clustering

Observation: Dense clusters are completely contained 
by less dense clusters

DDCC
CC11 CC22

Idea: Process objects in the “right” order and keep track of point 
density in their neighborhooddensity in their neighborhood MinPts = 3C

C1
C2

ε εε2 ε1
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Core- and Reachability DistanceCore- and Reachability Distance

Parameters: “generating” distance ε, fixed value MinPts

core-distanceε,MinPts(o)
“smallest distance such that o is a core object”
(if that distance is ≤ ε ; “?” otherwise)

MinPts = 5

reachability-distanceε,MinPts(p, o)
“smallest distance such that p is 
directly density-reachable from o” o

p
q εdirectly density reachable from o

(if that distance is ≤ ε ; “?” otherwise)
q ε

−>

 )(),(),( odistcopdistopdist

core-distance(o)
reachability-distance(p,o)
reachability-distance(q,o)ε>

−<




 −=−

),(
)(),(
)()(

)(
)(

),(
opdist

odistcopdist
p

undef
odistc

p
opdistr
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The Algorithm OPTICSThe Algorithm OPTICS

OPTICS O d i P i t T Id tif th Cl t i St tOPTICS: Ordering Points To Identify the Clustering Structure

Basic data structure: controlList
Memo i e sho test eachabilit distances seen so fa• Memorize shortest reachability distances seen so far 
(“distance of a jump to that point”)

Visit each pointVisit each point
• Make always a shortest jump

Output:
• order of points
• core-distance of points
• reachability-distance of pointsy p
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The Algorithm OPTICSThe Algorithm OPTICS

ControlList ordered by 
foreach o ∈ Database
// initially, o.processed = false for all objects o
if o.processed = false; 

cluster orderedControlList

y
reachability-distance.

insert (o, “?”) into ControlList;
while ControlList is not empty 

select first element (o, r-dist) from ControlList;

cluster-ordered
file

ControlList
≥

( ) ;
retrieve Nε(o) and determine c_dist= core-distance(o);
set o.processed = true;
write (o, r dist, c dist) to file; databasewrite (o, r_dist, c_dist) to file; 
if o is a core object at any distance ≤ ε 
foreach p ∈ Nε(o) not yet processed; 

determine r dist = reachability distance(p o);determine r_distp = reachability-distance(p, o); 
if (p, _) ∉ ControlList

insert (p, r_distp) in ControlList;
l if ( ld di t) C t lLi t d di t < ld di telse if (p, old_r_dist) ∈ ControlList and r_distp < old_r_dist

update (p, r_distp) in ControlList;
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OPTICS: PropertiesOPTICS: Properties

“Fl t” d it b d l t t *  d Mi Pt ft d“Flat” density-based clusters wrt. ε* ≤ ε and MinPts afterwards:
• Starts with an object o where c-dist(o) ≤ ε* and r-dist(o) > ε* 
• Continues while r-dist ≤ ε* 

1 2
3 16 18

17

1 34

4 2 16 17

18

Performance: approx runtime( DBSCAN(ε MinPts) )

Core-distance Reachability-distance

Performance: approx. runtime( DBSCAN(ε, MinPts) )
• O( n * runtime(ε-neighborhood-query) )

o without spatial index support (worst case): O( n2 )
o e.g. tree-based spatial index support: O( n ∗ log(n) )
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OPTICS: The Reachability PlotOPTICS: The Reachability Plot

t th d it b d l t i t trepresents the density-based clustering structure

easy to analyze 

independent of the dimension of the dataindependent of the dimension of the data

ta
nc

e

ta
nc

e

ab
ili

ty
 d

is
t

ab
ili

ty
 d

is
t

re
ac

h

cluster ordering

re
ac

h

cluster ordering
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OPTICS: Parameter SensitivityOPTICS: Parameter Sensitivity

Relatively insensitive to parameter settings
Good result if parameters are just
“large enough”

1 3

large enough

2

MinPts = 10, ε = 10 MinPts = 10, ε = 5 MinPts = 2, ε = 10,

1 2 3

, ,
1 2 3

1 2 3
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Agglomerative Hierarchical ClusteringAgglomerative Hierarchical Clustering

1. Initially, each object forms its own cluster
2. Compute all pairwise distances between the initial clusters 

(objects)(objects)
3. Merge the closest pair (A, B) in the set of the current clusters 

into a new cluster C = A ∪ B
4. Remove A and B from the set of current clusters; insert C into 

the set of current clusters
5. If the set of current clusters contains only C (i.e., if C5. If the set of current clusters contains only C (i.e., if C 

represents all objects from the database): STOP
6. Else: determine the distance between the new cluster C and 

all other clusters in the set of current clusters; go to step 3all other clusters in the set of current clusters; go to step 3.

Requires a distance function for clusters (sets of objects)
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Single Link Method and VariantsSingle Link Method and Variants

Given: a distance function dist(p, q) for database objects
The following distance functions for clusters (i.e., sets of objects) X
and Y are commonly used for hierarchical clustering:and Y are commonly used for hierarchical clustering:

),(min),(_ yxdistYXsldist
YX

=Single-Link:
, YyXx ∈∈

)()( diYXldi

g

l k ),(max),(_
,

yxdistYXcldist
YyXx ∈∈

=Complete-Link:

∑
∈∈

⋅
⋅

=
YyXx

yxdist
YX

YXaldist
,

),(
||||

1),(_Average-Link:
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Hierarchical Clustering: DiscussionHierarchical Clustering: Discussion

Advantages
• Does not require the number of clusters to be known in 

advanceadvance
• No (standard methods) or very robust parameters (OPTICS)
• Computes a complete hierarchy of clusters
• Good result visualizations integrated into the methods
• A “flat” partition can be derived afterwards (e.g. via a cut 

through the dendrogram or the reachability plot)through the dendrogram or the reachability plot)

Disadvantages
May not scale well• May not scale well

o Runtime for the standard methods: O(n2 log n2)
o Runtime for OPTICS: without index support O(n2)
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Scaling-Up Clustering Algorithms 
by using Data Reduction/Summarizations

B i Id

Data Clustering Derive

Basic Idea:

reduction
Clustering

approximation Approximate
result for full

data set

Original
data set data set

Reduced 
data items

Temporary
result

– Small Loss in Accuracy

+ Large Performance Boost

Most simple approach: Random Sampling
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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BIRCH (1996)BIRCH (1996)

Birch: Balanced Iterative Reducing and Clustering using Hierarchies,  
by Zhang, Ramakrishnan, Livny (SIGMOD’96)
I t ll t t CF (Cl t i F t ) tIncrementally construct a CF (Clustering Feature) tree, a 
hierarchical data structure for multiphase clustering

• Phase 1: scan DB to build an initial in-memory CF tree (a multi-y (
level compression of the data that tries to preserve the inherent 
clustering structure of the data)  
Phase 2: use an arbitrary clustering algorithm to cluster the leaf• Phase 2: use an arbitrary clustering algorithm to cluster the leaf 
nodes of the CF-tree 

Scales linearly: finds a good clustering with a single scan and 
improves the quality with a few additional scans
Weakness: handles only numeric data, and sensitive to the order of 
the data record.the data record.
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Cl i f D S i i BIRCHClustering of Data Summarizations: BIRCH

Basic Idea

• Construct a partitioning of a data set into “micro-
clusters” using an efficient index-like structure 

• Micro-Clusters, i.e., sets of object are described in a• Micro Clusters, i.e., sets of object are described in a 
compact way by Clustering Features (CFs)

CFs are organized hierarchically in a balanced tree• CFs are organized hierarchically in a balanced tree

• A standard clustering algorithm is then applied to 
h l f d f h CFthe leaf nodes of the CF-tree
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BIRCH – Basic NotionsBIRCH Basic Notions

Clustering Feature CF = (N, LS, SS) of a set of points C = {Xi}
• N = |C| count(x), number of points in C

• sum(x), linear sum of the N data points in C∑ =
=

N

i iXLS
1

• sum(x*x), square sum of the N data points in C∑ =
=

N

i iXSS
1

2

Information stored in CFs is sufficient to compute
Centroids• Centroids

• Measures for the compactness of clusters (e.g., TD, TD2)

• Distance measure for clusters• Distance measure for clusters

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 3076

BIRCH – Clustering Feature Tree (CF tree)BIRCH Clustering Feature Tree (CF tree)

Additivity theorem for CFs C = (N LS SS ) and C = (N LS SS ):Additivity theorem for CFs C1 = (N1,LS1,SS1) and C2 = (N2,LS2,SS2):

CF (C1 ∪ C2) = CF (C1) + CF (C2) = (N1+ N2, LS1+ LS2, SS1+ SS2) 

CFs can be computed incrementally
A CF Tree with parameters B, L, T has the following propertiesp g p p

• An internal node contains at most B entries [CFi, childi]
• A leaf node contains at most L entries [CFi]
• The diameter of all entries in a leaf node is at most T• The diameter of all entries in a leaf node is at most T
• Leaf nodes are connected via prev and next pointers

CF Tree construction
Transform a point p into a CF vector CF =(1 p p2)• Transform a point p into a CF-vector CFp=(1, p, p2)

• Insertion of p into the tree is analog to insertion into a B+-tree
• If the threshold T is violated by the insertion, the corresponding leaf 

node is split; reorganization of the tree in case of a split is again analognode is split; reorganization of the tree in case of a split is again analog 
to the reorganization in B+-trees
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BIRCH – Example for a CF TreeBIRCH Example for a CF Tree

CF1 CF3CF2 CF6

B = 7, L = 5

Root
child1 child3child2 child6

Root

CF1 = CF7 + . . . + CF12

CF7 CF9CF8 CF12 Internal Nodes
child7 child9child8 child12

CF7 = CF90 + . . . + CF94

CF90 CF91 CF94prev next CF95 CF96 CF99prev next Leaf Nodes
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BIRCH – DiscussionBIRCH Discussion

Benefits

• Compression factor can be tuned to the available main memory

• Efficient construction of a micro-clustering (O(n))

• Good clustering result for partitioning iterative-refinement 
l t i l ith h k d k d id hclustering algorithms such as k-means and k-medoid when 

applied to only the leaf nodes of a CF-tree

LimitationsLimitations

• Only for data from a Euclidean vector space (linear sum, 
square sum mean etc must be defined)square sum, mean, etc must be defined)

• Sensitive to the order of the data records

• How to utilize CFs for hierarchical clustering algorithms?• How to utilize CFs for hierarchical clustering algorithms?
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Hierarchical clustering of summarized data itemsHierarchical clustering of summarized data items

All 1 000 000 P iCompression to k objects
• Absolute sample size has to be 

very large in order to obtain good

All 1,000,000 Points

very large in order to obtain good 
result for large data sets

• CF centers are not suitable

k=10,000 k=1,000 k=200

lin
g

sa
m

pl
C

F
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Problems Clustering Summarized Data ItemsProblems Clustering Summarized Data Items

Structural Distortion Using High Reduction Rates
All Points 200 Sample Points

Approximation of the Final Result
What are the reachability values in the final• What are the reachability values in the final 
reachability plot?

o Objects can be assigned to their representativeso Objects can be assigned to their representatives, 
but the result is a graphical representation, not clusters



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 3081

Reasons for Structural Distortions IReasons for Structural Distortions I

Distances between sets of original objects are poorly approximated 
by distance between their representatives

dist(rA rB) dist(rC rD)=dist(rA,rB) dist(rC,rD)=

rA rB rC rD

“t di t ”

C

“t di t ”=
⇒ better approximation needed for the distance between 

“true distance” “true distance”=
pp

representatives and the points they represent
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Reasons for Structural Distortions IIReasons for Structural Distortions II

Reachability distances for representatives poorly approximate 
reachability distances for represented objects

rX
rY

“t h bilit di t ”
“reachability distances computed between representatives”

⇒ better approximation needed of the true reachability for 
representatives and the points they represent

“true reachability distances”
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Data BubblesData Bubbles

A Data Bubble for a set of objects X is a tuple 
B=(n, rep, extent, nnDist) where

n is the number of objects in X• n is the number of objects in X
• rep is a representative object for X
• extent is an estimation of the “radius” of X
• nnDist is a partial function, estimating k-nearest neighbor 

distances in X (defined at least for k=1, …, MinPts) 

nnDist(1)

Di t(2)

. . .

nnDist(2)

nnDist(MinPts)

rep

nnDist(MinPts)
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Distances for Data BubblesDistances for Data Bubbles

distance(B C)distance(B, C)

dist(B.rep, C.rep)
[B extent+C extent]

max[B.nnDist(1), C. nnDist(1)]
BB CC

-[B.extent+C.extent]
CCBB

+ [B.nnDist(1)+C.nnDist(1)]

core- and reachability-distance for Data Bubbles 
analog to core and reachability distance for points• analog to core and reachability-distance for points

virtual reachability-distance for a Data Bubble 
(Average reachability distance within a Data Bubble)(Average reachability-distance within a Data Bubble)

• basically nnDist(MinPts)



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 3085

OPTICS on Data BubblesOPTICS on Data Bubbles

Generate Data Bubbles
• Either: Draw a sample of k points, assign each object in 

the database to the closest sample point and compute 
the Data Bubbles for the resulting k sets
Or: Use Birch to create a CF tree and generate a Data• Or: Use Birch to create a CF-tree and generate a Data 
Bubble for each leaf node (can be computed from the 
information stored in a CF))

Apply OPTICS to the set of obtained Data Bubbles using the 
core- and reachability-distance defined for Data Bubbles
Before drawing the reachability-plot for the result on the 
Data Bubbles, expand the Data Bubbles by adding the 
objects contained in the Data Bubbles using the virtualobjects contained in the Data Bubbles using the virtual 
reachability
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Data Bubbles for d-Dimensional PointsData Bubbles for d-Dimensional Points

LSn 1
rep = center = CF from

N
LSX

n i
i =






∑
=1

1

( )
n n1

extent = average pairwise distance = ( ) ( )∑∑
= =

−
−⋅ i j

ji XX
nn 1 1

2

1
1

k
knnDist = expected knn-distance =

assuming uniform 
distribution

extentd
n
k

⋅

distribution

Can be computed without much extra cost
• A nn-classification for the final result has to be done anyway

o Sample + nn-classification before the clustering
Directly from CFso Directly from CFs
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EvaluationEvaluation

All 1,000,000 Points

200 Sample Points 200 Data Bubbles

Speed-Up = 150 !!!
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Runtime Comparison wrt DimensionRuntime Comparison wrt. Dimension

900
?

Runtime for OPTICS on Data Bubbles Speed-up compared to OPTICS on 
the whole data set
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Test databases:
• 1 million objects
• 15 randomly generated Gaussian clusters of random sizes 
• 1 000 Data Bubbles using sampling• 1,000 Data Bubbles, using sampling
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Data Bubbles vs Sampling + nn-ClassificationData Bubbles vs. Sampling + nn-Classification

No significant difference in runtime
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S li Cl if i ti
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Challenging Data BubblesChallenging Data Bubbles

Corel image collection
• features: first order moments in the HSV color 

scheme (Hue, Saturation, Value)

• 68,040 feature vectors
• Only two small clusters: 253 and 527 objects

Result of OPTICS 
Result of OPTICS on 1,000 Data Bubbles

Runtime = 20 sec
Speed-up = 228

Result of OPTICS 
for the whole data set 
Runtime = 4,562 sec p p

… …
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Data Bubbles – DiscussionData Bubbles Discussion 

Benefits
• Data Bubbles scale-up hierarchical clustering, too
• Can be based on Sampling or Clustering Features
• Allows for extremely high reduction factors

High performance boost

• Can recover even very small clusters
Small loss in accuracy

Limitations
• Only for data from Euclidean vector spaces

o for general metric data (example: sequence alignment): 
how to generate Data Bubbles i e center (medoids?)how to generate Data Bubbles, i.e., center (medoids?), 
extent, and nnDist efficiently?
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Database Techniques to Improve Runtime 
Efficiency – Objective

S fSo far
• Small data sets
• Main memory resident

Now
• Huge amounts of data that do not fit into main memory

D t f d t ( f t )• Data from secondary storage (e.g., for concurrent use)
o Access to data is very time-consuming when compared to main 

memory
Effi i t l ith i d• Efficient algorithms required

o i.e., runtime should not exceed O(n log n)

Scalability of clustering algorithmsScalability of clustering algorithms
• BIRCH, Data Bubbles, Index-based Sampling, Grid Clustering
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Database Techniques to Improve Runtime 
Efficiency – Basic Ideas

E l ti l i d t t l t d th dEmploy spatial index structures or related methods

Index structures build clusters in a preliminary sensep y
• Objects in close spatial neighborhood tend to be stored on the 

same data page in the index

Index structures are efficient
• Very simple heuristics for clustering

Fast access methods for different similarity queries
• E g range queries or k-nearest neighbor queries• E.g., range queries or k nearest neighbor queries
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Index-based Sampling – MethodIndex-based Sampling Method 

P d b E t K i l & X (1995)Proposed by Ester, Kriegel & Xu (1995)

Intuition: Pages of certain index structures have a fixed capacity, i.e. 
they can store the same number of pointsy p

• In sparse data space areas: larger regions
• In dense data space areas : smaller regions

Representatives from regions are a good 
S mple d t p ge ofsample of the data distribution as a whole

Build a spatial index on the data 

Sample data pages of 
an R*-tree

(e.g., an R*-tree)
Select representatives from the data 
pages of the indexp g

Apply a clustering algorithm to the 
set of representatives

Transfer the clustering structure toTransfer the clustering structure to 
the entire database
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Index-based Sampling – R-Tree structureIndex-based Sampling R-Tree structure

R-Tree: Balanced hierarchical decomposition of a multi-
dimensional data space

Data and directory pages
in secondary memory (disk)

Multidimensional points
in the data space

P1

P2 P3 P4 P5

P6 P7 P8 P9 P10 P11 P12 P13
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Index-based Sampling – Transfer Sample 
Clustering to Database

How to transfer the sample clustering to the database?

For k-means or k-medoid algorithm:
• Adopt the representatives of the sample clusters for the entire 

database (centroids, medoids)

For density based algorithms:For density-based algorithms:
• Create a representation for each cluster (e.g., MBR = Minimum 

Bounding Rectangle)
• Assign the objects to the closest cluster

For hierarchical algorithms:
• Hierarchical representations are difficult to generate (dendrogram or 

reachability diagram)
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Index-based Sampling –
Selection of Representatives

How many objects to be selected from each data page?
• Depends on clustering method

Depends on distribution of data points• Depends on distribution of data points

Useful heuristics for CLARANS: one object per data page
Good trade off between quality of clustering and runtime• Good trade-off between quality of clustering and runtime 
efficiency

Which objects should be selected?Which objects should be selected?
• Depends on clustering method and data distribution, too.
• Simple heuristics: select the „most central“ object from a dataSimple heuristics: select the „most central  object from a data 

page
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Index-based SamplingIndex-based Sampling

E i t l i f CLARANS
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7
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tio

Experimental comparison for CLARANS
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number of representatives

256 513 1027

0.07

2054 4108

0.20

n mbe of ep e ent ti e

Ru

Runtime of CLARANS is O(n 2) for n database objects
Clustering quality does not increase for more than 1024

number of representatives number of representatives

Clustering quality does not increase for more than 1024 
representatives
1024 representatives seem to trade-off quality and efficiency well
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Range Queries for Density-Based ClusteringRange Queries for Density-Based Clustering 

Basic operation for DBSCAN and OPTICS
• Determine the ε-neighborhood of each object o in the database

Efficient support of range queries by using indexing structuresEfficient support of ε-range queries by using indexing structures
• Spatial index structures: R-tree, X-tree
• Metric index structures: M-tree, slim tree

Recall runtime complexity for algorithms DBSCAN and OPTICS
single range query overall algorithmsingle range query overall algorithm

• without index O(n) O(n 2)
• when using index O(log n) O(n log n)
• using direct access O(1) O(n)

high-dimensional data spaces cause problems for spatial indexeshigh dimensional data spaces cause problems for spatial indexes
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GRID Clustering – ApproachGRID Clustering Approach

Method proposed by Schikuta (1996)
Ingredients

Manage data by a spatial indexing structure (here: grid file)• Manage data by a spatial indexing structure (here: grid file)
• Consider data pages of spatial index as cluster candidates
• Density of points in a region r of one or more data pagesy p g p g

l

( ) ( )
( )rvolume
rcountrdensity =

Recursively merge page regions
• Use page regions having a high density as cluster seeds
• Merge clusters recursively with neighboring page regions that• Merge clusters recursively with neighboring page regions that 

have a lower density
• i.e., density-based clustering
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GRID Clustering – MethodGRID Clustering Method

Start with data page having the highest point density as cluster r

Iteratively determine the (directly or indirectly) neighboring data 
th t h d it l l t th d it f l tpages s that have a density less or equal to the density of cluster r

• merge these pages s with cluster r

t th l f d it ( )• recompute the new value of density(r)

If there are only neighboring pages having a higher density than 
cluster r then create a new cluster starting at the page that hascluster r, then create a new cluster starting at the page that has 
the highest density among the data pages not yet considered

When including the information about the merging order the resultWhen including the information about the merging order the result 
may be visualized as a dendrogram
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GRID Clustering – ExampleGRID Clustering Example

2D projections of 3D data:

Dim1:Dim2 Dim1:Dim3 Dim2:Dim3Dim1:Dim2   Dim1:Dim3    Dim2:Dim3

3-dimensional data points
Resulting dendrogram esu t g de d og a
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Supporting Sets of Similarity-QueriesSupporting Sets of Similarity-Queries

Compute similarity (self-) join
Many DM algorithms, e.g., density-based clustering, generate large 
numbers of similarity queries that have to be processednumbers of similarity queries that have to be processed

• The algorithm generates a whole set of queries in one iteration.
• However, only one is executed at a time

Secondary MemoryP1

P2 P3 P4 P5

P P P P P P P PP6 P7 P8 P9 P10 P11 P12 P13
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Potentials for OptimizationPotentials for Optimization

Idea: Process sets of similarity queries simultaneously

Application

- QQ single sim.

Application

(Q3 Q2) Q1
multiple sim.QQQ

Query ProcessorQuery Processor

- Q2Q3 query (Q3 Q2) Q1query- Q2Q3Q1

DBQuery result (Q1) DBQuery result (Q1)
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Techniques to Improve EfficiencyTechniques to Improve Efficiency

Make “better usage” of the cache 
Reduction of I/O loads

Input/Output operations = disk accesses
Single random disk access: ca. 8-19 msec.

Try to avoid distance calculations
Reduction of CPU costReduction of CPU cost
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Reduction of the I/O costReduction of the I/O cost

processQ

cache

QQ

Single Similarity Query

processQ1 many I/O loads discQ
2

Qm ... -

B “ hi ” P l d d d i di l f ll iBetter “caching” strategy: Process a loaded data page immediately for all queries
in the set and store partial results instead of whole pages.

Q

Q2

Qm

partial
results

Multiple Similarity Query

Q1
Q2 
...
Qm

one I/O load disc
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Reduction of the I/O cost – EvaluationReduction of the I/O cost Evaluation 
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Reduction of the CPU cost (1)Reduction of the CPU cost (1)

Given
• Set of query objects Q1, …, Qm 

(with query ranges)







0
1 m

Q
QQ K

(with query ranges)
• Database objects 

(from “relevant” pages)




=

01Q
A

OM

Basic Procedure
• Compute distances between Q1, …, Qm



 0mQ

• Compute distance(P, Qi) only if it cannot be avoided by 
o a previously computed distance(P, Qj), j < i, 

plus the triangle inequalityo plus the triangle inequality
Important for complex distance functions

• L in high-dimensional spaces• Lp in high dimensional spaces
• Quadratic Form Dist., Earth Mover’s Distance, Edit Distance
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Reduction of the CPU cost (2)Reduction of the CPU cost (2)

Avoiding expensive distance calculationsvo d g e pe s ve d s ce c cu o s

P
Q

From triangle inequality: dist(Qi, P) + dist(Q1, Qi) ≥ dist(Q1, P)

ε Qidist(Qi, P) ≥ dist(Q1, P) – dist(Q1, Qi)

Q1

P

avoided if …  > QueryRange(Qi)

Q1

P
ε Qidist(Qi, P) ≥ dist(Q1, Qi) – dist(Q1, P)
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Reduction of the CPU cost (3)Reduction of the CPU cost (3)

Area of avoidable and not avoidable distance computations

Qi

Q1

must be calculated

Q1
can be avoided

Total CPU cost for m queries 
( ) )(**1 alculationdistance ctimemmC m −( )

)__(*_

)(*
2

evaluationinequalitytriangletimetrialstriangle

alculationdistance_ctimeCCPU

+

=

)(*_ alculationdistance_ctimeavoidednot+
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Reduction of the CPU cost – EvaluationReduction of the CPU cost – Evaluation 
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Total Query CostTotal Query Cost
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Further ImprovementsFurther Improvements

Parallelization: use s servers in a shared nothing 
environment to perform queries in parallel

D t i di t ib t d• Data is distributed among s servers
o local parts of the data are s times smaller
o small communication overhead
o Local answer sets are s times smaller (on the average)

increase the number of queries m proportionally 
– However the initialization overhead is O(m 2) in theHowever, the initialization overhead is O(m ) in the 
number of reference points m !

Use pre-computed reference point along the principal axes 
instead of the distances between the queries to avoidinstead of the distances between the queries to avoid 
distance calculations

• Only a very small number of reference points necessary to 
avoid a huge amount of distance calculations

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 3115

Evaluation of the Combined EffectsEvaluation of the Combined Effects

Overall Speed-up w.r.t. the number of servers s
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Incremental ClusteringIncremental Clustering

Motivation: Data Mining in a Data Warehouse
Report 

Generator

Integrate / 
Load

Serves OLAP

Data WarehouseOperational DB
Data

Mining

Updates are collected and periodically inserted into the Data 
W hWarehouse
all patterns derived from the Data Warehouse have to be updated

incremental Data Mining algorithmsincremental Data Mining algorithms
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Incremental DBSCANIncremental DBSCAN

In a density-based clustering, only a certain neighborhood of 
objects is affected when inserting/deleting some objects

• In general not necessary to re-cluster the whole database• In general not necessary to re cluster the whole database

Example: Insertion .
.
.. ...
.
.

• Only check the 
affected neighborhood
of an inserted object o

.. ..
N i N Cl

o o

of an inserted object o
• Only a few range 

queries necessary .....
Noise

......
New Cluster

..... ...
• Keep track of the 

current clustering
via virtual cluster-ids

. .. .
....

.. .
..

o o. ..
. .

Extension Merging
..
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Generalized Density-Based ClusteringGeneralized Density-Based Clustering

Motivation: Clustering a set of spatially extended objects
• Example: polygonal data, e.g., from a 2D GIS application

P elimina app oach t ansfo m pol gons to selected points• Preliminary approach: transform polygons to selected points
⇒ poor representation

Represented by
centers of masscenters of mass

Take into account the area or other non-spatial attributes
Use “natural” notions of connectedness (e g intersects or meets)Use natural  notions of connectedness (e.g. intersects or meets)
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Density-Connected SetsDensity-Connected Sets

Basic idea of a density-based cluster :y

“distance ≤ ε” “| N | ≥ MinPts”

“ε-neighborhood contains at least MinPts points”

distance ≤ ε | Nε | ≥ MinPts

NPred(o,p) MinWeight(N)NPred(o,p) 
reflexive, symmetric 
for pairs of objects

MinWeight(N)
arbitrary predicate 
for sets of objects

Generalization

Generalized Minimum Cardinality 
MinWeight(NNPred(o))

Generalized Neighborhood 
NNPred(o) = {p | NPred(o, p)} g ( NPred( ))NPred( ) {p | ( , p)}

“NPred-neighborhood has at least MinWeight”

Algorithm follows the same schema as DBSCAN
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Examples of Density-Connected SetsExamples of Density-Connected Sets

Density-Based Clusters:
• NPred(o,p): “distance(o,p) ≤ ε”NPred(o,p): distance(o,p) ≤ ε
• MinWeight(N): card(N) ≥ MinPts

Clustering Polygons:
• NPred(o,p): “o intersects p”( ,p) p
• MinWeight(N): sum of areas ≥ MinArea

Simple Forms of Region Growing:
• NPred: “pixels o,p adjacent and of same color”p p j
• MinWeight(N): TRUE
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Outlier DetectionOutlier Detection

Hawkins Definition of an Outlier 
• An object that deviates so much from the rest of the 

data set as to arouse suspicion that it was generated 
by a different mechanism
blProblem

• Find top n outlier points 
Applications:
• Credit card fraud detection
• Telecom fraud detection
• Customer segmentation
• Medical analysis
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Outlier Discovery: Statistical ApproachesOutlier Discovery: Statistical Approaches

Assume an underlying model
that generates data set
(e.g. normal distribution) 
Discordance tests depending on 
• data distribution
• distribution parameter 

(e.g., mean, variance)
• number of expected outliers

Limitations
• most tests are for single attributes only
• In many cases, data distribution may not be known
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Outlier Discovery: Distance-Based ApproachOutlier Discovery: Distance Based Approach

Introduced to overcome the main limitations imposed 
by statistical methods
• Multi-dimensional analysis without knowing data 

distribution.
b d l ( d ) lDistance-based outlier: A DB(pct, d_min)-outlier is an 

object o in a dataset DB such that at least a fraction pct
of the objects in DB lies at a distance greater thanof the objects in DB lies at a distance greater than 
d_min from o
Algorithms for mining distance-based outliersAlgorithms for mining distance based outliers  
• Index-based algorithm
• Nested-loop algorithm• Nested loop algorithm 
• Cell-based algorithm
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Outlier Discovery: Local Outlier FactorsOutlier Discovery: Local Outlier Factors

o1: clear DB(pct, dmin)-outlier for

• Pct: greater than 99% C1

• dmin: very large

o2: Not well captured

ith t DB( t d i ) tli• either: not an DB(pct, dmin)-outlier

• or: many points in C1 are outliers, too! C2
o2

Local outlier factor of points p:
• Basic Idea: Look at the k-nearest

o1

Ck = 4• Basic Idea: Look at the k nearest 
neighbor distance of p relative to the 
k-nearest neighbor distances of these 
k i hb f

p

Ck  4

dmin

imax

dmax imin
k neighbors of p
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Chapter 3: ClusteringChapter 3: Clustering

I t d ti t l t iIntroduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

• K-Means
• K-Medoid
• Choice of parameters: Initialization, Silhouette coefficient

D it b d M th d DBSCANDensity-based Methods: DBSCAN
Hierarchical Methods

• Density-based hierarchical clustering: OPTICS
A l i Hi hi l Cl i Si l Li k V i• Agglomerative Hierarchical Clustering: Single-Link + Variants

Scaling Up Clustering Algorithms
• BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

f l Q ( l )Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

• Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Subspace ClusteringSubspace Clustering

Problem: selection of a relevant subset of dimensions 
for a given clustering task.

• Irrelevant dimensions can obscure an otherwise good result

d2

true cluster 1

d2
d3

meaningless cluster 2

meaningless cluster 1

d1

true cluster 2

d1

meaningless cluster 2

Discard d3

• Too many dimensions reduce the interpretability of a result
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Subspace Clustering – MotivationSubspace Clustering Motivation

Imagine a cluster toImagine a cluster to 
be characterized by a 
1D subspace, e.g., 
sala “„salary“
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Subspace Clustering: Major ApproachesSubspace Clustering: Major Approaches

Subspace clustering: determine subspaces of the original 
space that allow a better clustering than the original points

F i l F(k t) b t f d th t h k tt ib tFascicles F(k, t): subsets of records that have k attributes 
such that

the values in each of the k attributes vary by at most t• the values in each of the k attributes vary by at most t
o range t for numeric attributes

number of different values t for categorical attributeso number of different values t for categorical attributes

• The number of records in the fascicle exceeds some 
thresholdthreshold

• k is maximal
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Subspace Clustering: CLIQUESubspace Clustering: CLIQUE

CLIQUE [Agrawal, Gehrke, Gunopulos & Raghavan 1998]

1 Identification of subspaces with clusters1. Identification of subspaces with clusters
2. Identification of clusters
3. Generation of cluster descriptions
4. Cluster: „dense region“ in the data space

D it th h ldDensity threshold τ
• Region r is dense if r contains more than τ points
Grid based approachGrid based approach
• Each dimension is partitioned into ξ intervals
• Cluster is union of connected dense regions
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Subspace ClusteringSubspace Clustering

Identification of subspaces with clusters

Task: Discover dense base regionsg

Naive approach

• Compute histograms for all subsets of dimensions

• Inefficient for high dimensional data, i.e. O(2d ) for d dimensions

Greedy algorithm (Bottom-Up)

• Start with empty set of dimensions

• Iteratively include a new dimension

J tifi ti f l ith t i it f d itJustification of algorithm: monotonicity of density

• If a region r is dense in a k-dimensional space s, then any 
projection of r into a (k – 1)-dimensional subspace of s is denseprojection of r into a (k 1) dimensional subspace of s is dense.

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 3132

Subspace Clustering – ExampleSubspace Clustering Example

2D dense region

3D candidate region

2D candidate region

R ti l it f d l ith

2D candidate region

)( knO k +ξRuntime complexity of greedy algorithm:
• for n data objects and k being the highest number of 

dimensions of any dense region

)( knO ⋅+ξ

dimensions of any dense region
Heuristics to reduce the number of candidate regions
• Principle of „minimum description length“p „ p g
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Subspace Clustering – Identifying ClustersSubspace Clustering Identifying Clusters

Task: find maximal sets of connected dense regions
Given all dense regions within a single k-dimensional subspace
Search space is a graphSearch space is a graph

• Vertices are dense regions
• Edges are boundaries or dimensions the regions have in g g

common
Depth first search applicable
Runtime complexity:Runtime complexity: 

• Assume dense regions to reside in main memory (e.g., in a 
hash tree)

• For each dense region, 2k neighbors have to be checked
2kn accesses to the data structure
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Subspace Clustering – Generation of Cluster 
Descriptions

P blProblem
• Given a cluster, i.e., a set of connected 

dense regions
• Desired result: set of hyperrectangles 

that optimally cover the cluster region

Standard methods?
• Problem is NP hard

T i ffi i t f hi h di i d• Too inefficient for high dimensions d

Heuristic method
• Cover the cluster by maximal regions
• Remove redundant regions
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Subspace Clustering – Example

)

Subspace Clustering Example
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Subspace Clustering – ExperimentsSubspace Clustering Experiments

runtime
runtime

Cf. Runtime complexity of CLIQUE: linear in n, superlinear in d
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Subspace Clustering – Discussion (CLIQUE)Subspace Clustering Discussion (CLIQUE)

+  automatic detection of subspaces with clusters

+ automatic detection of clusters at all+  automatic detection of clusters at all

+  no assumptions about the distribution of data

+ insensitivity to the order of the data+  insensitivity to the order of the data

+  good scalability wrt.  the number n of data objects

– accuracy of result depends on parameter ξ

– heuristics needed that restricts search on all subsets of dimensions

Possibly, not all subspaces with clusters are found
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Recent Developments in Subspace ClusteringRecent Developments in Subspace Clustering

ENCLUS: based on CLIQUE Entropy as a density criterionENCLUS: based on CLIQUE Entropy as a density criterion
• Advantage: Correlation of dimensions can be evaluated
• Limitations: Entropy is computationally complex

MAFIA: based on CLIQUE adaptive grid of variable size in 
different dimensions

Advantage: can be parallelized (pMAFIA)• Advantage: can be parallelized (pMAFIA)
• Limitations: only axis-parallel subspace

RIS (Ranking Interesting Subspaces): no Clustering searchesRIS (Ranking Interesting Subspaces): no Clustering, searches 
and evaluates subspaces which can then be used by „traditional“ 
clustering algorithms

• Calculates for any database object o those subspaces for which o is y j p
still a core object

• Integrates the dimensionality and, possibly, closeness to the edges 
of the data space into the evaluation
Prunes sub and superspaces which are redundant• Prunes sub- and superspaces which are redundant
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Recent Developments in Subspace ClusteringRecent Developments in Subspace Clustering
PROCLUS based on CLARANS

F h f k d d id l l t it b t di i• For each of k random medoids, calculate its best dimensions 
o correlation with its neighboring points in these dimensions 

• assign points to their cluster
If clustering is improved iterate; else the algorithm terminates• If clustering is improved, iterate; else the algorithm terminates

• Advantage: linear in both the number of objects and dimensions
• Limitations: may converge only locally minimum,  fixed number of 

medoids, only convex clusters, axis-parallel projections onlymedoids, only convex clusters, axis parallel projections only

Monte Carlo Projective Clustering
• Approximates optimal projective clusterApproximates optimal projective cluster
• For a set of random points, determine those dimensions where the 

distance to a pivot p is less than a threshold ω in this dimension
• The cluster is the set of points which are in a 2ω hyperbox around p
• Iterate, keeping clusters of more than MinPts elements
• Return only the best subspace cluster
• Advantage: good results for highdimensional spaces

i i i l i ll l l• Limitations: only axis-parallel clusters
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Recent Developments in Subspace ClusteringRecent Developments in Subspace Clustering

δ-Clusters: data coherence: similar not necessarily identical valuesδ Clusters: data coherence: similar, not necessarily identical values
• Uses a matrix of objects/attributes
• Actions: add/remove object/attribute to/from cluster 

In each iteration determine possible actions for each cluster• In each iteration, determine possible actions for each cluster 
o perform action with best improvement over all clusters

• Different heuristics used for the ordering of actions
Ad t l d l f h h i d t• Advantage: general model for coherence search in data

• Limitations: computationally complex; only additive or multiplicative 
coherence (i.e. no negative or other correlations)

4C: based on DBSCAN and PCA to find coherences in the data
• Density is extended to include correlation using local covariance matrices 
• Algorithm similar to DBSCAN
• Advantage: integrates coherence and density
• Limitations: dimensionality of the correlation has to be specified, not y p ,

hierarchical, only linear dependencies
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WEKA: Open File Exercise 4) WEKA
a) How large is each bin for each attribute?

b) What is the mean value and standard 
deviation for each attribute?deviation for each attribute?

) N li th d t i th tt ib tc) Normalize the data using the attribute 
filtering function of WEKA. 

WEKA: Statistics WEKA: Statistics



WEKA: Statistics WEKA: Statistics

Data Transformation: min-max 
Normalization

• min=-max normalization with: min=0 and max=1

Aminv −'
AA

A

minmax
v

−
='

• transforms data linearly to a new range
– range outliers may be detected afterwards as well

1

i
slope is:

minA maxA

0
AA

AA

minmax
new_minnew_max

−
−

WEKA: Statistics



Exercise 4) WEKA
a) How large is each bin for each attribute?

b) What is the mean value and standard 
deviation for each attribute?deviation for each attribute?

) N li th d t i th tt ib tc) Normalize the data using the attribute 
filtering function of WEKA. 

d) Normalize the data using the instance 
filtering function of WEKAfiltering function of WEKA. 
What is the normalization method?

WEKA: Statistics

WEKA: Statistics Definition: NormDefinition: Norm
• Examples for norms in        for x = (x1,…,xd) are:dRIp ( 1, , d)

– Lp-Norm: pp /1/1
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WEKA: Statistics

Text distances
• “Unlike classification or prediction, which analyzes data objects with 

class labels, clustering analyzes data objects without consulting a 
known class label. The class labels are not in the data because they y
are not known.”

• “Classification can be used for prediction of class labels of data 
objects However in many applications prediction of missing or notobjects. However, in many applications, prediction of missing or not 
known data values rather than class labels is performed to fit data 
objects into a schema.”

“Sun Salutation a ritual performed in the early morning combines• “Sun Salutation, a ritual performed in the early morning, combines 
seven different postures. The sun, the life generator, is invoked by 
this Yogic exercise, an easy way to keep fit.”

St d { b b b f h i i t i k• Stopwords = { a, an, are, be, because, by, can, for, however, in, into, is, keep, many, 
not, of, or, rather, than, the, they, this, to, unlike, used, way, which, with, without }

Attributes Text 1 Text 2 Text 3

analyzes 2
applications 1

Log(1) Log(2) Log(3)

0.301 0 0
0 0 0

Len(1) Len(2) Log(3)

0.0906 0 0
0 0 0

0 2276 0 0906 0class 3 2
classification 1 1
clustering 1
combines 1

lti 1

0.4771 0.301 0
0 0 0
0 0 0
0 0 0
0 0 0

0.2276 0.0906 0
0 0 0
0 0 0
0 0 0
0 0 0consulting 1

data 3 3
different 1
early 1
easy 1

0 0 0
0.4771 0.4771 0

0 0 0
0 0 0
0 0 0

0 0 0
0.2276 0.2276 0

0 0 0
0 0 0
0 0 0easy 1

exercise 1
fit 1 1
generator 1
invoked 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0invoked 1

known 2 1
labels 3 2
life 1
missing 1

0 0 0
0.301 0 0

0.4771 0.301 0
0 0 0
0 0 0

0.0906 0 0
0.2276 0.0906 0

0 0 0
0 0 0
0 0 0missing 1

morning 1
objects 2 2
performed 1 1
postures 1

0 0 0
0 0 0

0.301 0.301 0
0 0 0
0 0 0

0 0 0
0.0906 0.0906 0

0 0 0
0 0 0
0 0 0906 0postu es

prediction 1 2
ritual 1
salutation 1
schema 1

0 0 0
0 0.301 0
0 0 0
0 0 0
0 0 0

0 0.0906 0
0 0 0
0 0 0
0 0 0
0 0 0

seven 1
sun 2
values 1
Yogic 1

0 0 0
0 0 0.301
0 0 0
0 0 0

0 0 0.0906
0 0 0
0 0 0

0.9771 0.7682 0.301



Attributes Text 1 Text 2 Text 3

analyzes 2
applications 1

Log(1) Log(2) Log(3)

0.301 0 0
0 0 0

Len(1) Len(2) Log(3)

0.0906 0 0
0 0 0

0 2276 0 0906 0 yxclass 3 2
classification 1 1
clustering 1
combines 1

lti 1

0.4771 0.301 0
0 0 0
0 0 0
0 0 0
0 0 0

0.2276 0.0906 0
0 0 0
0 0 0
0 0 0
0 0 0

yx
yx

yxdist
⋅

−=
,

1),(

dist(Text 1, Text 2)

1 (

consulting 1
data 3 3
different 1
early 1
easy 1

0 0 0
0.4771 0.4771 0

0 0 0
0 0 0
0 0 0

0 0 0
0.2276 0.2276 0

0 0 0
0 0 0
0 0 0

= 1- (
(0,47*0,3)+
(0,47*0,47)+

easy 1
exercise 1
fit 1 1
generator 1
invoked 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

(0,47*0,3)+
(0,3*0,3)

) / 

invoked 1
known 2 1
labels 3 2
life 1
missing 1

0 0 0
0.301 0 0

0.4771 0.301 0
0 0 0
0 0 0

0.0906 0 0
0.2276 0.0906 0

0 0 0
0 0 0
0 0 0

)
(

0.97 * 0.76
)

missing 1
morning 1
objects 2 2
performed 1 1
postures 1

0 0 0
0 0 0

0.301 0.301 0
0 0 0
0 0 0

0 0 0
0.0906 0.0906 0

0 0 0
0 0 0
0 0 0906 0 )  postu es

prediction 1 2
ritual 1
salutation 1
schema 1

0 0 0
0 0.301 0
0 0 0
0 0 0
0 0 0

0 0.0906 0
0 0 0
0 0 0
0 0 0
0 0 0

seven 1
sun 2
values 1
Yogic 1

0 0 0
0 0 0.301
0 0 0
0 0 0

0 0 0.0906
0 0 0
0 0 0

0.9771 0.7682 0.301
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partition after second step: (final)partition after second step: (final)
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Exercise 3-4) WEKA

Remove the class attribute using the preprocessing dialog. 

Go to the clustering dialog.

Cluster the iris dataset using the k-Means Clustering algorithm 
with k=5. 

Hand in the result given by WEKA (Cluster mean and standard 
deviation).)

Visualize the cluster mean values and standard deviation for 
sepallength versus sepalwidth- sepallength versus sepalwidth

- petallength versus petalwidth

WEKA: Open File

• sa



WEKA: Statistics Exercise 3-4) WEKA
Remove the class attribute using the preprocessing 

dialog. 

Go to the clustering dialog.

Cluster the iris dataset using the k-Means Clustering 
algorithm with k=5. g

Hand in the result given by WEKA (Cluster mean and 
standard deviation)standard deviation).

Visualize the cluster mean values and standard 
deviation for 
- sepallength versus sepalwidth

petallength versus petalwidth- petallength versus petalwidth

WEKA: Clustering WEKA: Clustering



WEKA: Clustering Exercise 3-4) WEKA
How large is each bin for each attribute?

What is the mean value and standard deviation for eachWhat is the mean value and standard deviation for each 
attribute?

Remove the class attribute using the preprocessing dialogRemove the class attribute using the preprocessing dialog. 
Go to the clustering dialog.

Cl t th i i d t t i th k M Cl t i l ithCluster the iris dataset using the k-Means Clustering algorithm 
with k=5. 

H d i th lt i b WEKA (Cl t d t d dHand in the result given by WEKA (Cluster mean and standard 
deviation).

Visualize the cluster mean values and standard deviation for 
- sepallength versus sepalwidth
- petallength versus petalwidthp g p

WEKA: Clustering



Exercise 3 4 c) WEKAExercise 3.4 c) WEKA

• Create an “arff”-file containing the 
datapoints from exercise 3. p

Cl t th d t fil i WEKA ith• Cluster the data file using WEKA with 
k=2 and k=3 clusters. 

• Hand in the result given by WEKA 
(Cluster mean and standard deviation)(Cluster mean and standard deviation).

Data File
% Data points for data mining tutorial
% Exercise: Cluster the data file with k-mean 
% cl stering sing k 2 and k 3 cl sters% clustering using k=2 and k=3 clusters. 

@relation data-points

@ tt ib t l { t }

@d t

@attribute class {one, two}
@attribute x numeric
@attribute y numeric

@data
% 10 instances
one,3,8
one,3,6 8

9
10

, ,

5
6
7
8

one,3,4
one,4,7
two,4,5
two 5 1

1
2
3
4two,5,1

two,5,5
two,8,4
two,9,1

0
1

0 1 2 3 4 5 6 7 8 9 10
two,9,5
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Chapter 4: ClassificationChapter 4: Classification

Introduction

Classification problem evaluation of classifiers• Classification problem, evaluation of classifiers

Bayesian Classifiers

• Optimal Bayes classifier, naive Bayes classifier, applications

Nearest Neighbor Classifier

• Basic notions, choice of parameters, applications

Decision Tree ClassifiersDecision Tree Classifiers

• Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machinesSupport vector machines

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 4003

Introduction: Classification ProblemIntroduction: Classification Problem

Given

• a d-dimensional data space D with attributes ai, i = 1, …, d
a set C = {c c } of k distinct class labels c j = 1 k• a set C = {c1, …, ck} of k distinct class labels ci, j = 1, …, k

• a set O ⊆ D of objects, o = (o1, …, od), with known class labels from C
Searched

• class label for objects from D – O, i.e. for objects with unknown class

• a classifier K: D → C
f lDemarcation from clustering

• Classification: classes are known in advance (a priori)

• Clustering: classes are determined• Clustering: classes are determined

Related problem: prediction

• Determine the value of a numerical attribute

• Method: e.g., regression analysis
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Introduction: ExampleIntroduction: Example

ID age car type risk
1 23 family high
2 17 sportive high
3 43 sportive high
4 68 family low
5 32 truck low

Simple Classifier

if age > 50 then risk = low;

if ≤ 50 d k h i k lif age ≤ 50 and car type = truck then risk = low;

if age ≤ 50 and car type ≠ truck then risk = high.
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Classification Process: 
Model Construction (= training phase)

Training

Classification
algorithm

Training
data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
M A i t t P f 7

Classifier

Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes if rank = ‘professor’y
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

if rank  professor
or years > 6

then tenured = ‘yes’
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Classification Process: 
Application of the Model (test phase, 
application phase)application phase)

Unknown data ClassifierUnknown data

(Jeff Professor 4)(Jeff, Professor, 4)

Tenured?

Goal is sometimes not to classify unknown data
yes

Goal is sometimes not to classify unknown data 
but to get a better understanding of the data
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Evaluation of Classifiers – AccuracyEvaluation of Classifiers Accuracy

Classification Accuracy
• Predict the class label for each object from a 

data set o (= test set)
• Determine the fraction of correctly predicted 

class labels:

)(
label)classpredicted(correctly

ocount
countaccuracytionclassifica =

)(ocount

• Classification error = 1 – classification accuracy
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Evaluation of Classifiers – NotionsEvaluation of Classifiers Notions

O fittiOverfitting
• Classifier is optimized to training data
• May yield worse results for entire data sety y
• Potential reasons

o bad quality of training data (noise, missing values, wrong values)
different statistical characteristics of training data and test datao different statistical characteristics of training data and test data

Train-and-Test
D iti f d t t i t t titiDecomposition of data set o into two partitions
• Training data to train the classifier

o construction of the model by using information about the class labels
• Test data to evaluate the classifier

o temporarily hide class labels, predict them anew and compare results 
with original class labelsg
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Evaluation of Classifiers –
Cross Validation

Train-and-Test is not applicable if the set of objects for 
which the class label is known is very small

m-fold Cross Validation
d l i b f ( l )• Decompose data set evenly into m subsets of (nearly) 

the same size.
Ite ati el se m 1 pa titions as t aining data and the• Iteratively use m – 1 partitions as training data and the 
remaining single partition as test data.
Combine the m classification accuracy values to an• Combine the m classification accuracy values to an 
overall classification accuracy, and combine the m
generated models to an overall model for the data.g
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Evaluation of Classifiers –
Leave-One-Out

If data set is very small
Leave-one-out is, in some sense, a degenerate variant of 

lid ticross validation
• For each of the objects o in the data set D:

U t D t i i to Use set D – o as training set
o Use the singleton set {o} as test set
o Predict the class label of object oo Predict the class label of object o

• Compute classification accuracy by dividing the number 
of correct predictions through the database size |D|p g | |

Particularly well applicable to nearest-neighbor classifiersy pp g
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Quality Measures for ClassifiersQuality Measures for Classifiers

Classification accuracy
Compactness of the model

d b f d l• decision tree size; number of decision rules
Interpretability of the model

• Insights and understanding provided by the models g ts a d u de sta d g p o ded by t e ode
Efficiency

• Time to generate the model (training time)
Ti t l th d l ( di ti ti )• Time to apply the model (prediction time)

Scalability for large databases
• Efficiency in disk-resident databasesy

Robustness
• Robust against noise or missing values
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Quality Measures for ClassifiersQuality Measures for Classifiers

Let K be a classifier, TR ⊆ O a training set, and TE ⊆ O
a test set. Let C(o) denote the correct class label of an 
object o ∈ Oobject o ∈ O.
Classification Accuracy of K on TE:

|)}()({| oCoKTEo =∈

True classification error
||

|)}()(,{|)(
TE

oCoKTEoKGTE
=∈

=

||
|)}()(,{|)(

TE
oCoKTEoKFTE

≠∈
=

Apparent classification error
|| TE

|)}()(,{|)( oCoKTRoKF ≠∈
=

||
)(

TR
KFTR =
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What Is Prediction?What Is Prediction?

Prediction is similar to classification

• First, construct a model

• Second, use model to predict unknown value

o Major method for prediction is regression

- Linear and multiple regressionp g

- Non-linear regression

Prediction is different from classificationPrediction is different from classification

• Classification refers to predict categorical class label

Prediction models continuous valued functions• Prediction models continuous-valued functions
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Predictive Modeling in Databasesg

Predictive modeling: Predict data values or construct   
generalized linear models based on the database data.

Predict value ranges or category distributions• Predict value ranges or category distributions
• Predict individual values (by regression techniques)

Method outline:Method outline:
• Minimal generalization
• Attribute relevance analysis• Attribute relevance analysis
• Generalized linear model construction
• Prediction

Determine the major factors which influence the prediction
• Data relevance analysis: uncertainty measurement, 

entropy analysis, expert judgement, etc.
Multi-level prediction: drill-down and roll-up analysis
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Regress Analysis and Log-Linear Models 
in Prediction

Linear regression: Y = α + β X
• Two parameters, α and β specify the line and are to be 

estimated by using the data at hand.estimated by using the data at hand.
• using the least squares criterion to the known values of Y1, 

Y2, …, X1, X2, …
Multiple regression: Y = b + b X + b XMultiple regression: Y = b0 + b1 X1 + b2 X2

• Many nonlinear functions can be transformed into the 
above.

Log-linear models:
• The multi-way table of joint probabilities is approximated 

by a product of lower-order tables.y p
• Predict values of cells in a cube by using margin values.
• Applicable to categorial data only.

Probability: p(a b c d) β δ• Probability:  p(a, b, c, d) = αab βac χad δbcd
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Chapter 4: ClassificationChapter 4: Classification

Introduction

Classification problem evaluation of classifiers• Classification problem, evaluation of classifiers

Bayesian Classifiers

• Optimal Bayes classifier, naive Bayes classifier, applications

Nearest Neighbor Classifier

• Basic notions, choice of parameters, applications

Decision Tree ClassifiersDecision Tree Classifiers

• Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machinesSupport vector machines
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Bayesian Classification: Why?Bayesian Classification: Why?

P b bili i l iProbabilistic learning
• Calculate explicit probabilities for hypothesis, among the most 

practical approaches to certain types of learning problemspractical approaches to certain types of learning problems

Incremental
• Each training example can incrementally increase/decrease the g p y /

probability that a hypothesis is correct.  Prior knowledge can be 
combined with observed data.

Probabilistic prediction
• Predict multiple hypotheses, weighted by their probabilities

StandardStandard
• Even when Bayesian methods are computationally intractable, they 

can provide a standard of optimal decision making against whichcan provide a standard of optimal decision making against which 
other methods can be measured
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Bayes Classifiers – MotivationBayes Classifiers Motivation

GiGiven
• an object o and two class labels, positive and negative
• three independent hypotheses h1, h2, h3d p d ypo 1, 2, 3

• the a-posteriori probabilities of the hypotheses for a given o:
o P(h1 | o) = 0.4

P(h | o) = 0 3o P(h2 | o) = 0.3
o P(h3 | o) = 0.3

• the a-posteriori probabilities of the classes for a given 
hypothesis:hypothesis:

o P(negative | h1) = 0, P(positive | h1) = 1
o P(negative | h2) = 1, P(positive | h2) = 0
o P(negative | h3) = 1, P(positive | h3) = 0

Result: Object o belongs 
• to class positive with a probability of 0.4 (=1*0.4+0*0.3+0*0.3)p p y ( )
• to class negative with a probability of 0.6 (=0*0.4+1*0.3+1*0.3)
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Optimal Bayes Classifier (1)Optimal Bayes Classifier (1)

Let H = {h1, … hl} a set of independent hypotheses
Let o be a query object to be classified
The optimal Bayes classifier assigns the following class label to objectThe optimal Bayes classifier assigns the following class label to object 
o:






∑ ohPhcP )|()|(maxarg

See example from above: object o is assigned to class negative





 ⋅∑

∈∈ Hh
iij

Cc
ij

ohPhcP )|()|(maxarg

See example from above: object o is assigned to class negative

Optimal Bayes classifierOptimal Bayes classifier
• Among the classifiers using the same a-priori knowledge, there is 

no classifier that yields a better classification accuracy.
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Optimal Bayes Classifier (2)Optimal Bayes Classifier (2)

The assumption that in any case exactly one of the hypothesis h
( ) ( ) ( ) ( )jjj cpcopopocp ⋅=⋅ ||  :rule Bayes´

The assumption that in any case, exactly one of the hypothesis hi
holds leads to a simplified decision rule:

{ })|(maxarg ocp

Since typically the values of P(cj | o) are not known the rule is

{ })|(maxarg ocp j
Cc j ∈

Since, typically, the values of P(cj | o) are not known, the rule is 
transformed by using Bayes´ theorem:

{ } { })()|( jj cpcop  ⋅

Final decision rule for the optimal Bayes classifier (called Maximum

{ } { })()|(maxarg
)(

)()|(
maxarg)|(maxarg jj

Cc

jj

Cc
j

Cc
cpcop

op
cpcop

ocp
jjj

⋅=








=
∈∈∈

Final decision rule for the optimal Bayes classifier (called Maximum 
Likelihood classifier)

{ })()|(maxarg cPcoPc = { })()|(maxarg jj
Cc

max cPcoPc
j

⋅=
∈
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Naïve Bayes Classifier (1)Naïve Bayes Classifier (1)

Estimate the values of p(c ) by using the observedEstimate the values of p(cj) by using the observed 
frequency of the individual class labels cj

How to estimate the values of p(o | cj)?How to estimate the values of p(o | cj)?
Assumptions of the naïve Bayes classifier

Objects are given as d-dim vectors o = (o o )• Objects are given as d-dim. vectors, o = (o1, …, od)
• For any given class cj, the attribute values oi are 

conditionally independent, i.e.conditionally independent, i.e.

∏=
d

i
jijd copcoop

1
1 )|()|,,( K

Decision rule for the naïve Bayes classifier





 ∏

d

=i 1









⋅∏
=∈ i

jij
Cc

copcp
j 1

)|()(maxarg
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Naïve Bayesian Classifier (2)y ( )

Independency assumption: ∏=
d

i
jijd copcoop

1
1 )|()|,,( K

If i-th attribute is categorical:
p(oi|C) is estimated as the relative frequency

=i 1

p(oi|Cj) 

of samples having value xi as i-th attribute 
in class C

xif(xi)

If i-th attribute is continuous:
p(oi|C) is estimated through e.g.:

G i d it f ti

p(oi|Cj) 

• Gaussian density function 
determine (µi,j ,σi,j)

xi
µi,j

2

,

,

2
1

1)|(









 −
−

= ji

jiio

eCop σ

µ

Computationally easy in both cases

2
)|( =ji eCop

σπ

Computationally easy in both cases
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Bayesian ClassifierBayesian Classifier 

Assuming dimensions of o =(o1 od ) are not independentAssuming dimensions of o (o1…od ) are not independent
Assume multivariate normal distribution (=Gaussian)

Too )()(1 11 µµ −Σ−− −

with
( )

jjj oo

j
dj e)CP(o

)()(
2

2/12/ ||2
1|

µµ

π
Σ

Σ
=

with 
j j

CN

C

classofobjectsofnumberis

 class ofr mean vectoµ

N

j

j j CN

matrix covariance d x d  theis 
classofobjectsofnumber  is 

Σ

T
ji

N

jij oo
j

)()( 
1i

µµ −•−=Σ ∑
= (outer product)( p )

jjjj and ΣΣΣΣ  of inverse  theis   oft determinan  theis || -1
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Example:
Interpretation of Raster Images

Scenario: automated interpretation of raster images
• Take d images from a certain region (d frequency bands)
• Represent each pixel by d gray values: (o1, …, od)

Basic assumption: different surface properties of the earth 
(„landuse“) follow a characteristic reflection and emission pattern(„landuse ) follow a characteristic reflection and emission pattern

f l d• • • •

(12),(17.5)

farmland
water

• • • •
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

Band 1
12

10

•

(8.5),(18.7)

•
• •

•

•
•• •

••

town

Band 2
16.5 22.020.018.0
8

10(8.5),(18.7)

••••
1 1 1 2
1 1 2 2
3 2 3 2
3 3 3 3

Surface of earth Feature space
Band 2
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Interpretation of Raster ImagesInterpretation of Raster Images

Application of the optimal Bayes classifier
• Estimation of the p(o | c) without assumption of conditional 

independence
• Assumption of d-dimensional normal (= Gaussian) distributions 

for the gray value vectors of a classfor the gray value vectors of a class

waterProbability p of
l b hclass membership

decision regions

town

f l dfarmland
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Interpretation of Raster ImagesInterpretation of Raster Images

Method: Estimate the following measures from training data
� µj: d-dimensional mean vector of all feature vectors of class cjj j

� Σj: d x d  Covariance matrix of class cj

P bl ith th d i i lProblems with the decision rule
• if likelihood of respective class is very low
• if several classes share the same likelihood• if several classes share the same likelihood

threshold

unclassified regions
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Example: Classification of TextExample: Classification of Text

A li ti [C l 1999] [Ch k b i D & I d k 1998]Applications [Craven et al. 1999], [Chakrabarti, Dom & Indyk 1998]
• email filtering (spam, categories)
• classification of web sites• classification of web sites

Vocabulary T = {t1, …, td} of relevant terms
Representation of a text document o = (o1, …, od) 1 d

• oi indicates the frequency how often term ti occurs in 
document o

MethodMethod
• Selection of relevant terms
• Computation of term frequenciesp q
• Classification of new documents
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Classifying Text: Selection of TermsClassifying Text: Selection of Terms

Reduction of occurring terms to basic 
representatives
• Stemming
• Depending on the language of the texts• Depending on the language of the texts

Single-word of multi-word terms?
Eli i ti f t d ( d i )Elimination of stop words (and, or, is, …)
Further reduction of the number of terms
Still up to 100,000 terms to handle
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Classifying Text: Reduction of the Number of 
Terms

Optimal approach
• There are O(2NumberOfTerms) many subsets of terms
• Optimal subset cannot be determined efficiently

Greedy approach
• Evaluate the separatability of each term individually
• Descendingly sort the terms according to that measure
• Choose the first d terms as attributes
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Classifying Text: Classification of New 
Documents (1)

Application of the naive Bayes classifier
• Problem: frequencies of the different terms are not 

d d f h h b ll l dindependent from each other but are, typically, correlated

Important task:Important task:
• Estimate the conditional probabilities p(oi | cj ) from the 

training documents

Consider the generation of a document o from class c which has n
terms by a Bernoulli experiment

A i th t h f f h f t t• Assume a coin that has a face for each of m terms ti
• Throw this m-sided coin n times
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Classifying Text: Classification of New 
Documents (2)

Probability that coin shows face ti
• f(ti c) is the relative frequency of term ti in class c• f(ti, c) is the relative frequency of term ti in class c
Potential problem

Term t does not occur in any training document of class co Term ti does not occur in any training document of class cj

o Term ti occurs in a document o to be classified

o Within that document o other important (characteristic)o Within that document o, other important (characteristic) 
terms of class cj occur

Goal: avoid P(oi | cj) = 0( i | j)

Smoothing of relative frequencies
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Classifying Text: ExperimentsClassifying Text: Experiments

Experimental setup [Craven et al. 1999]

• Training set: 4,127 web pages of computer science dept‘s

Cl d f l ff d h• Classes: department, faculty, staff, student, research project, course, 
other

• 4-fold cross validation: Three universities for training, fourth university g, y
for test

Summary of results

Cl ifi tion ie of 70% to 80% fo mo t l e• Classification accuracies of 70% to 80% for most classes

• Classification accuracy of 9% for class staff but 80% correct in 
superclass person

• Poor classification accuracy for class other due to high variance of the 
documents in that class
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Bayesian Classifiers – DiscussionBayesian Classifiers Discussion

+ Optimality
golden standard for comparison with competing classifiers
h l f f l+ High classification accuracy for many applications

+ Incremental computation
classifier can be adopted to new training objectsp g j

(store count, sum, square-sum to derive mean, variance etc.)
+ Incorporation of expert knowledge about the application

– Limited applicability
often, required conditional probabilities are not available, q p

– Lack of efficient computation
in case of a high number of attributes
particularly for Bayesian belief networksparticularly for Bayesian belief networks
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The independence hypothesisThe independence hypothesis…

… makes computation possible

yields optimal classifiers when satisfied… yields optimal classifiers when satisfied

… but is seldom satisfied in practice, as attributes 
(variables) are often correlated(variables) are often correlated.

Attempts to overcome this limitation:

• Bayesian networks, that combine Bayesian reasoning 
with causal relationships between attributes

• Decision trees, that reason on one attribute at the 
time, considering most important attributes firsttime, considering most important attributes first
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Chapter 4: ClassificationChapter 4: Classification

Introduction

• Classification problem, evaluation of classifiersClassification problem, evaluation of classifiers

Bayesian Classifiers

• Optimal Bayes classifier, naive Bayes classifier, applications• Optimal Bayes classifier, naive Bayes classifier, applications

Nearest Neighbor Classifier

• Basic notions, choice of parameters, applications• Basic notions, choice of parameters, applications

Decision Tree Classifiers

• Basic notions split strategies overfitting pruning of decision trees• Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines
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Supervised vs. Unsupervised Learning

Supervised learning (classification)

• Supervision: The training data (observations, 
measurements, etc.) are accompanied by labels 
indicating the class of the observations

• New data is classified based on the training set

Unsupervised learning (clustering)Unsupervised learning (clustering)

• The class labels of training data is unknown

• Given a set of measurements, observations, etc. with 
the aim of establishing the existence of classes or 
clusters in the data



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 4037

Instance-Based MethodsInstance Based Methods

Instance-based learning: 
• Store training examples and delay the processing (“lazy 

evaluation”) until a new instance must be classifiedevaluation ) until a new instance must be classified

Typical approaches
• k-nearest neighbor approach

o Instances represented as points in a Euclidean 
space or more general as points in a metric spacespace or, more general, as points in a metric space.

• Locally weighted regression
o Constructs local approximationpp

• Case-based reasoning
o Uses symbolic representations and knowledge-based 

inferenceinference
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Nearest Neighbor ClassifiersNearest Neighbor Classifiers

Motivation: Problems with Bayes classifiers
• Assumption of normal (Gaussian) distribution of thep ( )

vectors of a class requires the estimation of the
parameters µi and Σi

• Estimation of µi requires significantly less training• Estimation of µi requires significantly less training
data than the estimation of Σi

Obj tiObjective
• Classifier that requires no more information than

mean values µi of each class cimean values µi of each class ci
• Or even less than mean values but only the training

points
N t i hb l ifiNearest neighbor classifier
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Nearest Neighbor Classifiers: Exampleg p

Variant 2Variant 1 
use individual objects

lf
wolfwolfµ

use mean values µj

dog

wolf

dog

wolf
wolf

µdog

µwolf

dog dogq catcat

catcat
dog

µdog

dogq catcat

tcat µcat

Classifier decides that query object q is a dog

catcatcat

• Classifier decides that query object q is a dog
• Instance-based learning
• Related to case-based reasoning
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Nearest Neighbor Classifiers: BasicsNearest Neighbor Classifiers: Basics

F d t l dFundamental procedure
• Use attribute vectors o = (o1, …, od) as training objects
• Variant 1:

o Determine mean vector µi for each class cj  
(in training phase)

o Assign query object to the class cj of the nearest g q y j j  
mean vector µi

• Variant 2:
Variant 1

o Assign query object to the class cj of the closest 
training object

• Generalizations: 
o Use more than one representative per class (Var. 1)
o Consider k > 1 neighbors for the class assignment decision (Var. 2)

Variant 2

o Consider k > 1 neighbors for the class assignment decision (Var. 2)
o Use weights for the classes of the k nearest neighbors
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Nearest Neighbor Classifiers: NotionsNearest Neighbor Classifiers: Notions

Distance function
• Defines the (dis-)similarity for pairs of objects

Number k of neighbors to be considered

Decision set
• Set of k nearest neighboring objects to be used in the decision 

rulerule 

Decision rule
• Given the class labels of the objects from the decision set, how 

to determine the class label to be assigned to the query object?
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Nearest Neighbor Classifiers: Exampleg p

Classes + and –+ Classes + and 

decision set for k = 1+

−

− −

+ +

−

+-

-

-

decision set for k = 5
+

− −
+

−

−

−

-

-

-

Using unit weights (i.e., no weights) for the decision set
• Simply called “majority criterion”
• rule k = 1 yields class „+“, rule k = 5 yields class „–“

Using the reciprocal square of the distances as weights
• Both rules, k = 1 and k = 5, yield class „+“

Using a-priori probability (=frequency) of classes as weightsUsing a-priori probability (=frequency) of classes as weights
• Both rules, k = 1 and k = 5, yield class „+“
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Nearest Neighbor Classifiers: ParametersNearest Neighbor Classifiers: Parameters

Problem of choosing an appropriate value for parameter k
• k too small: high sensitivity against outliers

k l d b f h• k too large: decision set contains many objects from other 
classes

• Empirically, 1 << k < 10 yields a high classification accuracy in 
many cases

decision set for k = 1

q decision set for k = 7

decision set for k = 17
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Nearest Neighbor Classifiers: Decision RulesNearest Neighbor Classifiers: Decision Rules

St d d lStandard rule
• Choose majority class in the decision set, i.e. the class with the 

most representatives in the decision set
Weighted decision rules

• Use weights for the classes in the decision set
o Use distance to the query object: 1/d(o q)2o Use distance to the query object:  1/d(o,q)
o Use frequency of classes in the training set, i.e. the a-priori probability 

of the class

Example
• Class a: 95%, class b: 5%

D i i { b b b}• Decision set = {a, a, a, a, b, b, b}
• Standard rule yields class a
• Weighted rule yields class bg y
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NN Classifiers: Index SupportNN Classifiers: Index Support

Assume a balanced indexing structure to be given
• Examples: R-tree, X-tree, M-tree, …

Nearest Neighbor Search
• Query point qQue y po t q
• Partition list

o Minimum bounding rectangles (MBRs) for which the corresponding 
subtrees have still to be processedsubtrees have still to be processed

• NN: nearest neighbor of q in the data pages read up to now

qq

MinDist(A,q) MinDist(B,q)MBR(A)

MBR(B)MBR(B)
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NN Classifiers: Index Support with R-TreesNN Classifiers: Index Support with R-Trees

properties of the R Treeproperties of the R-Tree
• leaf nodes contain data points, inner nodes contain MBRs (Minimum 

Bounding Rectangles) and pointersg g
• all leaves have the same distance (= path length) to the root node
• each node contains at most M entries

h d ( d ) l ( /2)• each node (exception: root node) contains at least m (≤ M/2) 
entries
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NN Classifiers: Index Support with R-Trees (2)NN Classifiers: Index Support with R-Trees (2)
query point q
visited regions/nodesg

Start with root node
Update “partition list” (sorted by mindist) with nodes, that still need to be visited (prune 

d h h l d h d f d d )nodes, that have larger mindist than distance from q to NN candidate)
Visit next node in “partition list” (lowest mindist)
When visiting leaf node: update possible NN candidate (if any point in node is closer than 

i l f d NN did t )previously found NN candidate)
This is a “best first search” algorithm which runs in between O(log n) and O(n)
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Example: Classification of StarsExample: Classification of Stars

Analysis of astronomical data

Removal of noise

Manual analysis
of interesting 

Image segmentation

Feature extraction
Automatic
Classification

Classification of star types with a NN classifier

star types
Feature extraction

of star type

Classification of star types with a NN classifier
Use the Hipparcos catalogue as training set
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Classification of Stars: Training DataClassification of Stars: Training Data

U Hi C t l [ESA 1998] t t i “ th l ifiUse Hipparcos Catalogue [ESA 1998] to „train“ the classifier

Contains around 118,000 stars,
78 attributes (brightness, distance from earth, color spectrum, …)
Class label attribute: spectral type (= attribute H76)

Examples• Examples
o H76: G0
o H76: G7.2

ANY

o H76: KIII/IV

Values of the spectral type are vague

G K …

G0 G1 G2 … …p yp g
Hierarchy of classes

• Use the first level of the class hierarchy
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Classification of Stars: Training DataClassification of Stars: Training Data

Distribution of classes in Hipparcos Catalogue

Class #Instances f action of instancesClass #Instances fraction of instances
K 32,036 27.0
F 25,607 21.7
G 22 701 19 3G 22,701 19.3
A 18,704 15.8
B 10,421 8.8
M 4 862 4 1

frequent classes

M 4,862 4.1
O 265 0.22
C 165 0.14
R 89 0 07R 89 0.07
W 75 0.06
N 63 0.05
S 25 0.02

rare classes

S 25 0.02
D 27 0.02
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Classification of Stars: ExperimentsClassification of Stars: Experiments

Experimental Evaluation [Poschenrieder 1998]

Distance function
• using 6 attributes (color, brightness, distance from earth)
• using 5 attributes (color, brightness)
• Result: best classification accuracy obtained for 6 attributes

Number k of neighbors
• Result: best classification accuracy obtained for k = 15

Decision Rule
• weighted by distance

weighted by class frequency• weighted by class frequency
• Result: best classification accuracy obtained by using distance-based 

weights but not by using frequency-based weights
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Classification of Stars: ExperimentsClassification of Stars: Experiments

class incorrectly correctly classificationclass incorrectly correctly classification
classified classified accuracy

K 408 2338 85.1%
F 350 2110 85.8%
G 784 1405 64.2%
A 312 975 75.8%
B 308 241 43.9%
M 88 349 79 9%M 88 349 79.9%
C 4 5 55.6%
R 5 0 0%
W 4 0 0%
O 9 0 0%
N 4 1 20%
D 3 0 0%
S 1 0 0%S 1 0 0%

Total 2461 7529 75.3%

High accuracy for frequent classes, poor accuracy for rare classes
Most of the rare classes have less than k / 2 = 8 instances
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NN Classification: DiscussionNN Classification: Discussion

+ applicability: training data required only+ applicability: training data required only
+ high classification accuracy in many applications
+ easy incremental adaptation to new training objects
+ useful also for prediction
+ robust to noisy data by averaging k-nearest neighbors

– naïve implementation is inefficient
• requires k-nearest neighbor query processing
• support by database techniques may help to reduce from O(n) to 

O(log n) for n training objects
– does not produce explicit knowledge about classesp p g

• But provides some explanation information
– Curse of dimensionality: distance between neighbors could be 

dominated by irrelevant attributesdominated by irrelevant attributes
• To overcome it, stretch axes or eliminate least relevant attributes
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Remarks on Lazy vs. Eager Learningy g g

Instance-based learning: lazy evaluation 
Decision-tree and Bayesian classification: eager evaluation
Key differencesKey differences

• Lazy method may consider query instance xq when deciding 
how to generalize beyond the training data D
E th d t i th h l d h l b l• Eager method cannot since they have already chosen global 
approximation when seeing the query

Efficiency
• Lazy - less time training but more time predicting

Accuracy
• Lazy method effectively uses a richer hypothesis space since it• Lazy method effectively uses a richer hypothesis space since it 

uses many local linear functions to form its implicit global 
approximation to the target function
Eager: must commit to a single hypothesis that covers the• Eager: must commit to a single hypothesis that covers the 
entire instance space

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 4055

Chapter 4: ClassificationChapter 4: Classification

Introduction

• Classification problem, evaluation of classifiersClassification problem, evaluation of classifiers

Bayesian Classifiers

• Optimal Bayes classifier, naive Bayes classifier, applications• Optimal Bayes classifier, naive Bayes classifier, applications

Nearest Neighbor Classifier

• Basic notions, choice of parameters, applications• Basic notions, choice of parameters, applications

Decision Tree Classifiers

• Basic notions split strategies overfitting pruning of decision trees• Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines
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Decision Tree Classifiers: MotivationDecision Tree Classifiers: Motivation

ID age car type risk car type

1 23 family high
2 17 sportive high
3 43 sportive high

= truck

risk = low

≠ truck

age3 43 sportive high
4 68 family low
5 32 truck low

> 60 ≤ 60

risk high

risk  low

risk low

age

Decision trees represent explicit knowledge

risk = highrisk = low

p p g
Decision trees are intuitive to most users
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Decision Tree Classifiers: Basics

Decision tree 
• A flow-chart-like tree structure
• Internal node denotes a test on an attribute
• Branch represents an outcome of the test
• Leaf nodes represent class labels or class distribution

Decision tree generation consists of two phasesDecision tree generation consists of two phases
• Tree construction

o At start, all the training examples are at the root
o Partition examples recursively based on selected attributeso Partition examples recursively based on selected attributes

• Tree pruning
o Identify and remove branches that reflect noise or outliers

Use of decision tree: Classifying an unknown sampleUse of decision tree: Classifying an unknown sample
• Traverse the tree and test the attribute values of the sample against the 

decision tree
Assign the class label of the respective leaf to the query object• Assign the class label of the respective leaf to the query object
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Algorithm for Decision Tree InductionAlgorithm for Decision Tree Induction

Basic algorithm (a greedy algorithm)Basic algorithm (a greedy algorithm)
• Tree is created in a top-down recursive divide-and-conquer manner
• Attributes may be categorical or continuous-valued
• At start, all the training examples are assigned to the root node
• Recursively partition the examples at each node and push them 

down to the new nodesdown to the new nodes
o Select test attributes and determine split points or split sets for the 

respective values on the basis of a heuristic or statistical measure 
(split strategy e g information gain)(split strategy, e.g., information gain)

Conditions for stopping partitioning
• All samples for a given node belong to the same class
• There are no remaining attributes for further partitioning –

majority voting is employed for classifying the leaf
• There are no samples left• There are no samples left
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Decision Tree Classifiers:
Training Data for „playing_tennis“

Query: How about playing tennis today?
Training data set:

day forecast temperature humidity wind tennis decisionday forecast temperature humidity wind tennis decision
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes3 overcast hot high weak yes
4 rainy mild high weak yes
5 rainy cool normal weak yes
6 rainy cool normal strong no6 rainy cool normal strong no
7 . . . . . . . . . . . . . . .
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Decision Tree Classifiers:Decision Tree Classifiers: 
A Decision Tree for „playing_tennis“

sunny overcast rainy

forecast

„YES“

sunny overcast rainy

humidity wind

„NO“ „YES“

high normal

„NO“ „YES“

strong weak
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Example: Training Dataset for “buys computer”Example: Training Dataset for buys_computer

i t d t dit tiage income student credit_rating
<=30 high no fair
<=30 high no excellent

This 
follows g

31…40 high no fair
>40 medium no fair
>40 low yes fair

follows 
an  
example >40 low yes fair

>40 low yes excellent
31…40 low yes excellent

example 
from 
Quinlan’s <=30 medium no fair

<=30 low yes fair
>40 medium yes fair

Quinlan s 
ID3

40 medium yes fair
<=30 medium yes excellent
31…40 medium no excellent
31 40 hi h f i31…40 high yes fair
>40 medium no excellent
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Output: A Decision Tree for “buys computer”Output: A Decision Tree for buys_computer

age?

overcast<=30 >4031..40

student? credit rating?yes

no yes fairexcellenty

no noyes yesy y
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Split Strategies: Types of SplitsSplit Strategies: Types of Splits

Categorical attributes
• split criteria based on equality „attribute = a“ or

based on subset relationships attribute set“• based on subset relationships „attribute ∈ set
• many possible choices (subsets)

attribute attribute attribute

Numerical attributes

=a1 =a2 =a3 ∈ s1 ∈ s2 < a ≥ a

• split criteria of the form „attribute < a“
• many possible choices for the split point
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Split Strategies: Quality of SplitsSplit Strategies: Quality of Splits

Given
• a set T of training objects

a (disjoint complete) partitioning T T T of T• a (disjoint, complete) partitioning T1, T2, …, Tm of T
• the relative frequencies pi of class ci in T

Searched
• a measure for the heterogeneity of a set S of training objects 

with respect to the class membership
• a split of T into partitions T1, T2, …, Tm such that the• a split of T into partitions T1, T2, …, Tm such that the 

heterogeneity is minimized

Proposals: Information gain Gini indexProposals: Information gain, Gini index
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Split Strategies: Attribute Selection MeasuresSplit Strategies: Attribute Selection Measures

Information gain (ID3/C4.5)
• All attributes are assumed to be categorical• All attributes are assumed to be categorical
• Can be modified for continuous-valued attributes

Gini index (IBM IntelligentMiner)Gini index (IBM IntelligentMiner)
• All attributes are assumed continuous-valued

Assume there exist several possible split values for• Assume there exist several possible split values for 
each attribute

• May need other tools such as clustering to get the• May need other tools, such as clustering, to get the 
possible split values

• Can be modified for categorical attributesCa be od ed o catego ca att butes
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Split Strategies: Information GainSplit Strategies: Information Gain

used in ID3 / C4 5used in ID3 / C4.5
Entropy

• minimum number of bits to encode a message that contains the 
class label of a random training objectclass label of a random training object

• the entropy of a set T of training objects is defined as follows:

∑k fo k l e ith

entropy(T) = 0 if p = 1 for any class c

∑ =
⋅=

k

i ii ppTentropy
1 2log)( for k classes ci with 

frequencies pi

• entropy(T) = 0 if pi = 1 for any class ci
• entropy (T) = 1 if there are k = 2 classes with pi = ½ for each i

Let A be the attribute that induced the partitioning T1, T2, …, Tm of 
T. The information gain of attribute A wrt. T is defined as follows:

||m T )(
||
||)(),(

1
i

i

i Tentropy
T
TTentropyATgainninformatio ⋅−= ∑

=
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Split Strategies: Gini IndexSplit Strategies: Gini Index

Used in IBM‘s IntelligentMiner
The Gini index for a set T of training objects is defined as follows

k

∑
=

−=
k

j
jpTgini

1

21)( for k classes ci with 
frequencies pi

• small value of Gini index ⇔ low heterogeneity
• large value of Gini index ⇔ high heterogeneity

Let A be the attribute that induced the partitioning T1, T2, …, Tm of 
T The Gini index of attribute A wrt T is defined as follows:T. The Gini index of attribute A wrt. T is defined as follows:

gini T
T

gini TA
i

m

( )
| |

( )= ⋅∑gini T
T

gini TA
i

i( )
| |

( )
=
∑

1
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Split Strategies: ExampleSplit Strategies: Example

humidity

9 „YES“ 5 „NO“  Entropy = 0.940

wind

9 „YES“ 5 „NO“  Entropy = 0.940

humidity

high normal

wind

weak strong

3 „YES“ 4 „NO“
Entropy = 0.985

6 „YES“ 1 „NO“
Entropy = 0.592

3 „YES“ 3 „NO“
Entropy = 1.0

6 „YES“ 2 „NO“
Entropy = 0.811

151.0592.0
14
7985.0

14
794.0),( =⋅−⋅−=humidityTgainninformatio

048001681108940)( windTgainninformatio 048.00.1
14

811.0
14

94.0),( =⋅−⋅−=windTgainninformatio

Result: humidity yields the highest information gainResult: humidity yields the highest information gain
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Avoid Overfitting in ClassificationAvoid Overfitting in Classification

Th t d t fit th t i i d tThe generated tree may overfit the training data
• Too many branches, some may reflect anomalies 

due to noise or outliersdue to noise or outliers
• Result is in poor accuracy for unseen samples

Two approaches to avoid overfittingTwo approaches to avoid overfitting 
• Prepruning: Halt tree construction early—do not split 

a node if this would result in the goodness measure 
f ll b l h h ldfalling below a threshold

o Difficult to choose an appropriate threshold
Po tp ning Remo e b n he f om “f ll g o n”• Postpruning: Remove branches from a “fully grown” 
tree—get a sequence of progressively pruned trees

o Use a set of data different from the training datao Use a set of data different from the training data 
to decide which is the “best pruned tree”
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Overfitting: NotionOverfitting: Notion

Overfitting occurs at the creation of a decision tree, if there are 
two trees E and E´ for which the following holds:

on the training set E has a smaller error rate than E´• on the training set, E has a smaller error rate than E
• on the overall data set, E´ has a smaller error rate than E

ur
ac

y
at

io
n 

ac
c

cl
as

si
fic

a

training data set
test data set

tree size
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Overfitting: AvoidanceOverfitting: Avoidance

R l f i d t i i d tRemoval of noisy and erraneous training data
• in particular, remove contradicting training data

Choice of an appropriate size of the training set
not too small not too large• not too small, not too large

Choice of an appropriate value for minimum support
• minimum support: minimum number of data objects a leaf node 

containscontains
• in general, minimum support >> 1

Choice of an appropriate value for minimum confidence
• minimum confidence: minimum fraction of the majority class in a leaf j y

node
• typically, minimum confidence << 100%
• leaf nodes can errors or noise in data records absorb

P t i f th d i i tPost pruning of the decision tree
• pruning of overspecialized branches
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Pruning of Decision Trees: ApproachPruning of Decision Trees: Approach

Error-Reducing Pruning [Mitchell 1997]

Decompose classified data into training set and test setDecompose classified data into training set and test set
Creation of a decision tree E for the training set
Pruning of E by using the test set TPruning of E by using the test set T

• determine the subtree of E whose pruning reduces 
the classification error on T the mostthe classification error on T the most

• remove that subtree
• finished if no such subtree existsfinished if no such subtree exists

only applicable if a sufficient number of classified dataonly applicable if a sufficient number of classified data 
is available
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Pruning of Decision Trees: ApproachPruning of Decision Trees: Approach

Minimal Cost Complexity Pruning
[Breiman, Friedman, Olshen & Stone 1984]

Does not require a separate test set
• applicable to small training sets as well

Pruning of the decision tree by using the training setPruning of the decision tree by using the training set
• classification error is no appropriate quality measure

New quality measure for decision trees:
trade off of classification error and tree size• trade-off of classification error and tree size

• weighted sum of classification error and tree size

G l b iGeneral observation
• the smaller decision trees yield the better generalization
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Pruning of Decision Trees: NotionsPruning of Decision Trees: Notions

Size | E | of a decision tree E: number of leaf nodes
Cost-complexity quality measure of E with respect to training set T

d l it t  0and complexity parameter α ≥ 0:

||)(),( EEFECC TT ⋅+= αα

For the smallest minimal subtree E(α) of E wrt. α, it is true that:

||)(),( EEFECC TT +αα

• (1) there is no subtree of E with a smaller cost complexity
• (2) if E(α) and B both fulfill (1), then is E(α) a subtree of B

0 E( ) E i l d ttα = 0: E(α) = E i.e., only error does matter
α = ∞: E(α) = root node of E i.e., only tree size does matter
0 < α < ∞: E(α) is a proper substructure of E, i.e. more than the0 < α < ∞: E(α) is a proper substructure of E, i.e. more than the 
root node or the root node
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Pruning of Decision Trees: Notions (2)g ( )

Let Ee denote the subtree with root node e
and {e} the tree that consists of the single node e

Relationship of Ee and {e}:

• for small values of α:  CCTe(Ee, α) < CCTe({e}, α)

• for large values of α:  CCTe(Ee, α) > CCTe({e}, α)

Critical value of α for e:

� αcrit: CCTe(Ee, αcrit) = CCTe({e}, αcrit)

• for α ≥ αcrit, it‘s worth to prune the tree at node e

weakest link: node with minimal value of αcrit
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Pruning of Decision Trees: MethodPruning of Decision Trees: Method

Start with a complete tree E
Iteratively remove the weakest link from the current treeIteratively remove the weakest link from the current tree
If there are several weakest links, remove them all in 
the same stepthe same step
Result: sequence of pruned trees

• E(α1) > E(α2) > . . . > E(αm)• E(α1) > E(α2) > . . . > E(αm)
• where α1 < α2 < . . . < αm

Selection of the best E(αi)Selection of the best E(αi)
• Estimate the classification error on the overall data 

set by an l-fold cross validation on the training setset by a o d c oss a dat o o t e t a g set
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Pruning of Decision Trees: ExamplePruning of Decision Trees: Example

i |E_i| observed error estimated error actual error
1 71 0,00 0,46 0,42
2 63 0,00 0,45 0,402 63 0,00 0,45 0,40
3 58 0,04 0,43 0,39
4 40 0,10 0,38 0,32
5 34 0,12 0,38 0,32
6 19 0 20 0 32 0 316 19 0,20 0,32 0,31
7 10 0,29 0,31 0,30
8 9 0,32 0,39 0,34
9 7 0,41 0,47 0,47

E yields the smallest estimated error and the lowest

10 . . . . . . . . . . . .

E7 yields the smallest estimated error and the lowest 
actual classification error
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Extracting Classification Rules from Treesg

R t th k l d i th f f IF THEN lRepresent the knowledge in the form of IF-THEN rules
One rule is created for each path from the root to a leaf
Each attribute value pair along a path forms a conjunctionEach attribute-value pair along a path forms a conjunction
The leaf node holds the class prediction
Rules are easier for humans to understandRules are easier for humans to understand
Example
IF age = ‘<=30’ AND student = ‘no’ THEN buys computer = ‘no’IF age = <=30  AND student = no THEN buys_computer = no
IF age = ‘<=30’ AND student = ‘yes’ THEN buys_computer = ‘yes’
IF age = ‘31…40’ THEN buys_computer = ‘yes’
IF age = ‘>40’ AND credit_rating = ‘excellent’

THEN buys_computer = ‘yes’
IF age = ‘>40’ AND credit_rating = ‘fair’ THEN buys_computer = ‘no’
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Enhancements to basic decision tree 
induction

Allow for continuous-valued attributes
• Dynamically define new discrete-valued attributes that 

partition the continuous attribute value into a discrete 
set of intervals

H dl i i tt ib t lHandle missing attribute values
• Assign the most common value of the attribute

A i b bilit t h f th ibl l• Assign probability to each of the possible values
Attribute construction

C ib b d i i h• Create new attributes based on existing ones that are 
sparsely represented
This reduces fragmentation repetition and replication• This reduces fragmentation, repetition, and replication
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Classification in Large DatabasesClassification in Large Databases

Classification—a classical problem extensively studied by 
statisticians and machine learning researchers

Scalability: Classifying data sets with millions of examples 
and hundreds of attributes with reasonable speed

Why decision tree induction in data mining?

• relatively faster learning speed (than other classification y g p (
methods)

• convertible to simple and easy to understand 
classification rules

• can use SQL queries for accessing databases
• comparable classification accuracy with other methods
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Scalable Decision Tree Induction 
Methods in Data Mining Studies

SLIQ (EDBT’96 Mehta et al )SLIQ (EDBT’96 — Mehta et al.)
• builds an index for each attribute and only class list and 

the current attribute list reside in memorythe current attribute list reside in memory
SPRINT (VLDB’96 — J. Shafer et al.)

constructs an attribute list data structure• constructs an attribute list data structure 
PUBLIC (VLDB’98 — Rastogi & Shim)

integrates tree splitting and tree pruning: stop growing• integrates tree splitting and tree pruning: stop growing 
the tree earlier

RainForest (VLDB’98 — Gehrke Ramakrishnan & Ganti)RainForest (VLDB 98 — Gehrke, Ramakrishnan & Ganti)
• separates the scalability aspects from the criteria that 

determine the quality of the treedetermine the quality of the tree
• builds an AVC-list (attribute, value, class label)
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Data Cube-Based Decision-Tree 
d iInduction

Integration of generalization with decision-tree induction 
(Kamber et al ‘97)(Kamber et al. 97).
Classification at primitive concept levels

• E g precise temperature humidity outlook etc• E.g., precise temperature, humidity, outlook, etc.
• Low-level concepts, scattered classes, bushy 

classification-treesclassification trees
• Semantic interpretation problems.

Cube-based multi-level classificationCube based multi level classification
• Relevance analysis at multi-levels.
• Information-gain analysis with dimension + level• Information gain analysis with dimension + level.
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Chapter 4: ClassificationChapter 4: Classification

Introduction

• Classification problem evaluation of classifiers• Classification problem, evaluation of classifiers

Bayesian Classifiers

Optimal Bayes classifier naive Bayes classifier applications• Optimal Bayes classifier, naive Bayes classifier, applications

Nearest Neighbor Classifier

• Basic notions, choice of parameters, applications

Decision Tree Classifiers

• Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines
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Support Vector Machines (SVM)

© and acknowledgements: Prof. Dr. Hans-Peter Kriegel and Matthias Schubert 
(LMU Munich) and Dr. Thorsten Joachims (U Dortmund and Cornell U)

Support Vector Machines (SVM)

Motivation: Linear Separation Vectors in ℜ d represent objects
Objects belong to exactly one of 
two respective classes
For the sake of simpler formulas, 
the used class labels are:the used class labels are:

y = –1 and y = +1

Classification by linear separation:
determine hyperplane which 
separates both vector sets with a

sepa ating h pe plane

separates both vector sets with a 
„maximal stability“
Assign unknown elements to the 
h lf i hi h th idseparating hyperplane halfspace in which they reside
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Support Vector MachinesSupport Vector Machines

P bl f li iProblems of linear separation
• Definition and efficient determination of the maximum 

stable hyperplanestable hyperplane
• Classes are not always linearly separable
• Computation of selected hyperplanes is very expensive• Computation of selected hyperplanes is very expensive
• Restriction to two classes
• …

Approach to solve these problems
• Support Vector Machines (SVMs) [Vapnik 1979, 1995]
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Maximum Margin HyperplaneMaximum Margin Hyperplane

Observation: There is no unique hyperplane to separate p1 from p2
Question: which hyperplane separates the classes best?

p1

p2

p1

p2

Criteria

p1 p1

Criteria
• Stability at insertion
• Distance to the objects of both classes
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Support Vector Machines: PrincipleSupport Vector Machines: Principle

Basic idea: Linear separation with the 
Maximum Margin Hyperplane (MMH)maximum margin hyperplane

• Distance to points from any of the 
two sets is maximal, i.e. at least ξ

Mi i l b bilit th t th

maximum margin hyperplane

• Minimal probability that the 
separating hyperplane has to be 
moved due to an insertionξ

ξ
p2

• Best generalization behaviour

MMH is „maximally stable“

ξ
p1

MMH only depends on points pi whose 
distance to the hyperplane exactly is ξmargin

• pi is called a support vector
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Maximum Margin HyperplaneMaximum Margin Hyperplane

Recall some algebraic notions for feature space FS

Inner product of two vectors x y ∈ FS: 〈x y〉• Inner product of two vectors x, y ∈ FS: 〈x, y〉

o e.g., canonical scalar product: ( )∑ =
⋅=

d

i ii1
, yxyx

• Hyperplane H(w,b) with normal vector w and value b:

( ) 0,, =+⇔∈ bbH xwwx
• The normal vector w may be normalized to w0:

( )

1,then ,1 000 =⋅= wwww

• Distance of a vector x to the hyperplane H(w0,b):

( )

,,
,ww

( ) bbHdist += xwwx ,),(, 00
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Computation of the 
Maximum Margin Hyperplane

Two assumptions for classifying xi  (class 1: yi = +1, class 2: yi = –1):

1) The classification is accurate (no error)

( ) 0
0,1

>+⇔
<+⇒−=

by
by ii xw

xw ( ) 0,
0,1

>+⋅⇔

>+⇒+=

by
by ii

ii

xw
xw

2) The margin is maximal
• Let ξ denote the minimum 

distance of any training object b+xwmin 0ξdistance of any training object 
xi to the hyperplane H(w,b):

biTRi

+=
∈

xw
x

,minξ

( ) ξb0
• Then: Maximize ξ subject to ∀i ∈ [1..n]: ( ) ξ≥+⋅ by ii xw ,0
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Maximum Margin HyperplaneMaximum Margin Hyperplane

( )Maximize ξ subject to ∀i ∈ [1..n]:

Scaling 0 by 1/ξ i e 0 / ξ yields the rephrased condition

( ) ξ≥+⋅ by ii xw ,0

Scaling w0 by 1/ξ, i.e. w = w0 / ξ yields the rephrased condition

∀i ∈ [1..n]: ( ) 1', ≥+⋅ by ii xw

Maximizing ξ corresponds to minimizing 〈w, w〉 = 〈w0, w0〉 / ξ2:

( )y ii

Primary optimization problem:

Find a vector w and value b that minimize

subject to ∀i ∈ [1..n]:

ww,

( ) 1, ≥+⋅ by ii xwsubject to ∀i ∈ [1..n]: ( ) 1, ≥+by ii xw
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Dual Optimization ProblemDual Optimization Problem

For computational purposes, transform the primary optimization 
problem into a dual one by using Lagrange multipliers

Dual optimization problem:  Find parameters αi that
n nn 1

minimize jiji

n

i

n

j
ji

n

i
i yyL xx ⋅⋅⋅⋅⋅−= ∑∑∑

= == 1 11 2
1)( αααα

∑n
subject to and 0 ≤ αi0

1
=⋅∑ =

n

i ii yα

For the solution, use algorithms from optimization theory
Up to now only linearly separable data
If data is not linearly separable: Soft Margin OptimizationIf data is not linearly separable: Soft Margin Optimization
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Soft Margin OptimizationSoft Margin Optimization

Problem of Maximum Margin Optimization: How to treat non-linearlyProblem of Maximum Margin Optimization: How to treat non linearly 
separable data?

• Two typical problems:

Trade-off between training error and size of margin

data points are not separable complete separation is not optimal

Trade off between training error and size of margin
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Soft Margin OptimizationSoft Margin Optimization

Additionally regard the number of 
training errors when optimizing:

ξ i th di t f t thξ
p2

• ξi is the distance from pi to the 
margin (often called slack 
variable)ξ1

ξ2

p1

p2

variable)
• C controls the influence of 

single training vectors

Primary optimization problem with soft margin:y p p g

Find an H(w,b) that minimizes ∑ =
⋅+

n

i iC
1

,2
1 ξww

( )subject to ∀i ∈ [1..n]:                           and ξi ≥ 0( ) iii by ξ−≥+⋅ 1,xw
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Soft Margin OptimizationSoft Margin Optimization

Dual optimization problem with Lagrange multipliers:

jiji

n n

ji

n

i yyL xx ⋅⋅⋅⋅⋅−= ∑∑∑ 2
1)( ααααDual OP: Maximize

Dual optimization problem with Lagrange multipliers:

jiji
i j

ji
i

i yy∑∑∑
= == 1 11 2

)(

subject to                      and 0 ≤ αi ≤ C∑
=

=⋅
n

i
ii y

1

0α
i 1

0 < αi < C:  pi is a support vector with ξi = 0
α = C: p is a support vector with ξ >0αi = C:        pi is a support vector with ξi >0
αi = 0:        pi is no support vector 

ξ

ξ2

p1

p2

ξ1Decision rule:

( ) 





+⋅⋅= ∑ iii bysignh xxx ,α( )





∑
∈SV

iii
i

yg
x

,
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Kernel Machines:
Non-Linearly Separable Data Sets

Problem: For real data sets, a linear separation with a high 
classification accuracy often is not possible
Idea: Transform the data non-linearly into a new space and try toIdea: Transform the data non-linearly into a new space, and try to 
separate the data in the new space linearly (extension of the 
hypotheses space)

E ample fo a q ad aticall sepa able data setExample for a quadratically separable data set
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Kernel Machines:
Extension of the Hypotheses Space

Principle

input space extended feature spaceφ

• Try to separate in the extended feature space linearly

input space extended feature spaceφ

• Try to separate in the extended feature space linearly

ExampleExample

(x, y, z) (x, y, z, x2, xy, xz, y2, yz, z2)φ

• Here: a hyperplane in the extended feature space is a 
polynomial of degree 2 in the input spacepolynomial of degree 2 in the input space
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Kernel Machines: ExampleKernel Machines: Example

Input space (2 attributes): Extended space (6 attributes):

( ) ( ) ( )122222φ( )21, xx=x ( ) ( )1,2,2,2,, 2121
2
2

2
1 xxxxxx ⋅⋅⋅⋅=xφ

x22xx σ
x2

12 xx ⋅= σ 2
12 xx ⋅= σ

x1 2
1x
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Kernel Machines: Example (2)Kernel Machines: Example (2)

Input space (2 attributes): Extended space (3 attributes):

( ) ( ) ( )22 2φ( )21, xx=x ( ) ( )21
2
2

2
1 2,, xxxx=xφ

x2
2
2x2

22
2

2
1 rxx =+

2x

r 2
22

2
2
1 rxx =+

0

x1
0

2
1x

0 r 20
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Kernel MachinesKernel Machines

Introduction of a kernel corresponds to a feature transformation

( ) newold FSFS →:xφ( ) newoldφ

Dual optimization problem:

Maximize )(),(
2
1)(

1 11
jiji

n

i

n

j
ji

n

i
i yyL xx φφαααα ⋅⋅⋅⋅−= ∑∑∑

= ==

subject to and 0 ≤ αi ≤ C
1 11 i ji = ==

0
1

=⋅∑ =

n

i ii yα

Feature transform φ only affects the scalar product of training vectors
Kernel K is a function: ( ) )()(K xxxx φφ=( ) )(),(, jijiK xxxx φφφ =
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Kernel Machines: ExamplesKernel Machines: Examples

Radial basis kernel Polynomial kernel (degree 2)

( ) ( )dK 1,),( += yxyx( )2exp),( yxyx −⋅−= γK
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Support Vector Machines: DiscussionSupport Vector Machines: Discussion

+ generate classifiers with a high classification accuracy
+ relatively weak tendency to overfitting (generalization 

th )theory)
+ efficient classification of new objects

d l+ compact models

– training times may be long (appropriate feature space may 
be very high-dimensional)

i i l t ti– expensive implementation
– resulting models rarely provide an intuition
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Chapter 4 – Conclusionsp

Classification is an extensively studied problem (mainly in 
statistics, machine learning & neural networks)

Classification is probably one of the most widely used data 
mining techniques with a lot of extensions

Scalability is still an important issue for database 
applications: thus combining classification with database 

h h ld btechniques should be a promising topic

Research directions: classification of non-relational data, e.g., 
text, spatial, multimedia, etc.

Example: kNN-classifiers rely on distances but to not require 
vector representations of data
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Chapter 5: Mining Association RulesChapter 5: Mining Association Rules

Introduction
Transaction databases market basket data analysis• Transaction databases, market basket data analysis

Simple Association RulesSimple Association Rules
• Basic notions, apriori algorithm, hash trees, FP-tree, 

interestingness

Hierarchical Association Rules
M ti ti ti l ith i t ti• Motivation, notions, algorithms, interestingness

Extensions and SummaryExtensions and Summary
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Example: Basket Data AnalysisExample: Basket Data Analysis

Transaction database
• {butter, bread, milk, sugar}

{butter flour milk sugar}• {butter, flour, milk, sugar}
• {butter, eggs, milk, salt}
• {eggs}

{b tt fl ilk lt }• {butter, flour, milk, salt, sugar}

Question of interest:Q
• Which items are bought together frequently?

A li tiApplications
• Improved store layout
• Cross marketingg
• Focused attached mailings / add-on sales
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What Is Association Mining?What Is Association Mining?

Association rule mining
• Finding frequent patterns, associations, correlations, or 

l f i bj icausal structures among sets of items or objects in 
transaction databases, relational databases, and other 
information repositories.information repositories.

• Rule form:  “Body ⇒ Head [support, confidence]”
ApplicationsApplications
• Basket data analysis, cross-marketing, catalog design, loss-

leader analysis, clustering, classification, etc.
Examples
• buys(x, “diapers”) ⇒ buys(x, “beers”) [0.5%, 60%]
• major(x, “CS”) ^ takes(x, “DB”) ⇒ grade(x, “A”) [1%, 75%]
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Association Rule: Basic ConceptsAssociation Rule: Basic Concepts

Given: (1) database of transactions, (2) each transaction is 
a list of items (purchased by a customer in a visit)
Find: all rules that correlate the presence of one set of 
items with that of another set of items

E g 98% of people ho p h e ti e nd to• E.g., 98% of people who purchase tires and auto 
accessories also get automotive services done

ApplicationsApplications
• * ⇒ Maintenance Agreement (What the store should 

do to boost Maintenance Agreement sales)
• Home Electronics ⇒ * (What other products should 

the store stocks up?)
Att h d ili i di t k ti• Attached mailing in direct marketing
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Rule Measures: Support and ConfidenceRule Measures: Support and Confidence

Find all the rules X & Y ⇒ Z withCustomer
Customer

Find all the rules X & Y ⇒ Z  with 
minimum confidence and support

• support, s, probability that a 

Customer
buys diaper

buys both

suppo , s, p obab y a a
transaction contains {X, Y, Z}

• confidence, c, conditional 
b bilit th t t tiprobability that a transaction 

having {X, Y} also contains Z
Customer
buys beer

Transaction ID Items Bought
2000 A,B,C

Let minimum support 50%, and 
minimum confidence 50%, then 

h1000 A,C
4000 A,D
5000 B E F

we have
• A ⇒ C  (50%, 66.6%)

C ( 0% 00%)5000 B,E,F • C ⇒ A  (50%, 100%)
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Association Rule Mining: A Road MapAssociation Rule Mining: A Road Map

B l tit ti i ti (B d th t f lBoolean vs. quantitative associations (Based on the types of values 
handled)
• buys(x, “SQLServer”) ^ buys(x, “DMBook”) →  buys(x, “DBMiner”) 

[0 2% 60%][0.2%, 60%]
o Short notation: SQLServer, DMBook ⇒ DBMiner [0.2%, 60%]

• age(x, “30..39”) ^ income(x, “42..48K”) →  buys(x, “PC”) [1%, 75%]
Single dimension vs. multiple dimensional associations
Single level vs. multiple-level analysis
• What brands of beers are associated with what brands of diapers?• What brands of beers are associated with what brands of diapers?

Various extensions
• Correlation, causality analysis

o Association does not necessarily imply correlation or causality
• Maxpatterns and closed itemsets
• Constraints enforcedConstraints enforced

o E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?
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Chapter 5: Mining Association RulesChapter 5: Mining Association Rules

Introduction
Transaction databases market basket data analysis• Transaction databases, market basket data analysis

Simple Association RulesSimple Association Rules
• Basic notions, apriori algorithm, hash trees, FP-tree, 

interestingness

Hierarchical Association Rules
M ti ti ti l ith i t ti• Motivation, notions, algorithms, interestingness

Extensions and SummaryExtensions and Summary
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Simple Association Rules: Basic NotionsSimple Association Rules: Basic Notions

Items I = {i1, ..., im}: a set of literals (denoting items)

Itemset X: Set of items X ⊆ I⊆

Database D: Set of transactions T, each transaction is a set of items
T ⊆ I
Transaction T contains an itemset X: X ⊆ T
The items in transactions and itemsets are sorted lexicographically:

it t X ( ) h• itemset X = (x1, x2, ..., xk ), where x1 ≤ x2 ≤ ... ≤ xk
Length of an itemset: number of elements in the itemset
k-itemset: itemset of length kg
Support of an itemset X: fraction of transactions in D that contain X:

• support(X) = count ({T, X ⊆ T }) / count (D)
A i ti l R l X Y h X I Y I d X Y ∅Association rule: Rule X ⇒ Y, where X ⊆ I, Y ⊆ I and X ∩ Y = ∅
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Simple Association Rules: Basics (2)Simple Association Rules: Basics (2)

Support s of an association rule X ⇒ Y in DSupport s of an association rule X ⇒ Y in D
• Support of itemsets covering X ∪ Y in D
• Support (X ⇒Y, D) = count ({T, X ∪ Y ⊆ T }) / count (D)pp ( , ) ({ , ⊆ }) / ( )

Confidence c of an association rule X ⇒ Y in D
F ti f t ti hi h t i th it t Y f• Fraction of transactions which contain the itemset Y from
the subset of transactions from D which contain the
itemset X

• Conf (X ⇒Y, D) = count ({T, X ∪ Y ⊆ T }) / count ({T, X ⊆ T }) 
• Conf (X ⇒Y, D) = support (X ∪ Y ) / support (X)

Task of mining association rules
• Given a database D, determine all association rules having, g

a support ≥ minSup and confidence ≥ minConf
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Mining Association Rules—ExampleMining Association Rules Example

Transaction ID Items Bought
2000 A,B,C

Min. support 50%
Min confidence 50%2000 A,B,C

1000 A,C
4000 A,D Frequent Itemset Support

{A} 75%

Min. confidence 50%

5000 B,E,F {A} 75%
{B} 50%
{C} 50%

For rule A ⇒ C:

{C} 50%
{A,C} 50%

For rule A ⇒ C:
support = support({A, C }) = 50%
confidence = support({A, C }) / support({A}) = 66.6%confidence  support({A, C }) / support({A})  66.6%
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Mining Association Rules: Key StepsMining Association Rules: Key Steps

Step 1: Find frequent itemsets, i.e. sets of items that 
have at least a minimum support

• A subset of a frequent itemset must also be a 
frequent itemsetfrequent itemset

o i.e., if {A,B } is a frequent itemset, both {A } and {B } must 
be frequent itemsetsq

• Iteratively find frequent itemsets with cardinality from 
1 to k1 to k

Step 2: Use the frequent itemsets {A,B,…,Z } to generate 
association rules e g A B ⇒ Z or A Z ⇒ B Cassociation rules, e.g. A,B,… ⇒ Z or A,Z,… ⇒ B,C

• n frequent items yield 2n – 2 association rules
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Mining Frequent Itemsets: Basic IdeaMining Frequent Itemsets: Basic Idea

Naïve Algorithm
• count the frequency of for all possible subsets of I in the 

databasedatabase
too expensive since there are 2m such itemsets for |I| = m 
items

The Apriori principle (monotonicity):
Any subset of a frequent itemset must be frequent

Method based on the apriori principle
• First count the 1-itemsets then the 2-itemsets then the 3-• First count the 1 itemsets, then the 2 itemsets, then the 3

itemsets, and so on
• When counting (k+1)-itemsets, only consider those (k+1)-

itemsets where all subsets of length k have been determineditemsets where all subsets of length k have been determined 
as frequent in the previous step
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The Apriori AlgorithmThe Apriori Algorithm

variable C : candidate itemsets of size kvariable Ck: candidate itemsets of size k
variable Lk: frequent itemsets of size k

L {frequent items}L1 = {frequent items}
for (k = 1; Lk !=∅; k++) do begin

// JOIN STEP: join Lk with itself to produce Ck+1
// PRUNE STEP di d (k 1) i f C h i// PRUNE STEP: discard (k+1)-itemsets from Ck+1 that contain 
non-frequent k-itemsets as subsets
Ck+1 = candidates generated from Lk

for each transaction t in database do
Increment the count of all candidates in Ck+1k+1
that are contained in t

Lk+1 = candidates in Ck+1 with min_support
endend

return ∪k Lk
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Generating Candidates (Join Step)Generating Candidates (Join Step)

Requirements for candidate k-itemsets Ck

• Must contain all frequent k-itemsets (superset property Ck ⊇Lk)
• Significantly smaller than the set of all k-subsets
• Suppose the items are sorted by any order (e.g., lexicograph.)

Step 1: JoiningStep 1: Joining
• Consider frequent (k – 1)-itemsets p and q
• p and q are joined if they share the same first k – 2 itemsp q j y

insert into Ck
p ∈ Lk–1   (1, 2, 3)

(1 2 3 4) Cselect p.i1, p.i2, …, p.ik–2, p.ik–1, q.ik–1

from Lk–1 p, Lk–1 q

(1, 2, 3, 4) ∈ Ck

q ∈ Lk–1 (1, 2, 4)

where p.i1=q.i1, …, p.ik –2 =q.ik–2, p.ik–1 < q.ik–1
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Generating Candidates (Prune Step)Generating Candidates (Prune Step)

Step 2: Pruning
• Remove candidate k-itemsets which contain a non-frequentq

(k – 1)-subset s, i.e., s ∉ Lk–1

• forall itemsets c in Ck do
forall (k–1)-subsets s of c do

if (s is not in Lk–1) then delete c from Ck

Example 1
• L3 = {(1 2 3), (1 2 4), (1 3 4), (1 3 5), (2 3 4)}

Candidates after the join step: {(1 2 3 4) (1 3 4 5)}• Candidates after the join step: {(1 2 3 4), (1 3 4 5)} 
• In the pruning step: delete (1 3 4 5) because (3 4 5) ∉ L3, i.e., 

(3 4 5) is not a frequent 3-itemset; also (1 4 5) ∉ L3

C4 = {(1 2 3 4)}
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Generating Candidates – Example 2Generating Candidates Example 2

L3 = {abc, abd, acd, ace, bcd }

Self-joining: L3*L3

• abcd from abc and abdabcd  from abc and abd

• acde from acd and ace

Pruning:

• abcd is ok: abc abd acd bcd are in L3• abcd is ok: abc, abd, acd, bcd are in L3

• acde is removed because ade (and cde) is not in L3

C4 = {abcd }
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G i C did F ll E lGenerating Candidates – Full Example

minsup = 2Database D

Scan D

itemset sup.
{1} 2
{2} 3

C1 itemset sup.
{1} 2
{2} 3

L1TID Items
100 1 3 4

minsup = 2Database D

Scan D {2} 3
{3} 3
{4} 1
{5} 3

{2} 3
{3} 3
{5} 3

C

200 2 3 5
300 1 2 3 5
400 2 5

{5} 3

itemset sup
{1 2} 1

C2itemset sup
{1 3} 2

L2

itemset
{1 2}
{1 3}

C2

{ }
{1 3} 2
{1 5} 1
{2 3} 2

Scan D

{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

{1 5}
{2 3}
{2 5}
{3 5}{2 5} 3

{3 5} 2

L3 itemset sup

{3 5} 2 {3 5}

C3 itemset
Scan D

L3 itemset sup
{2 3 5} 2

itemset
{2 3 5} Scan D C4  is empty
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How to Count Supports of Candidates?How to Count Supports of Candidates?

Why is counting supports of candidates a problem?

• The total number of candidates can be very huge

• One transaction may contain many candidates

MethodMethod

• Candidate itemsets are stored in a hash-tree
Leaf nodes of hash tree contain lists of itemsets and• Leaf nodes of hash-tree contain lists of itemsets and 
their support (i.e., counts)

Interior nodes contain hash tables• Interior nodes contain hash tables

• Subset function finds all the candidates contained in 
a transactiona transaction
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Hash-Tree – ExampleHash-Tree Example

h(K) = K mod 3for 3-Itemsets 0 1 2

0 1 2 0 1 2 0 1 2

(3 5 7)
(3 5 11)

(3 6 7) (7 9 12)
(1 6 11)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

(2 5 6)
(2 5 7)
(5 8 11)

(1 4 11)
(1 7 9)

0 1 20 1 2

(2 4 6) (2 4 7)(3 7 11)(3 4 15) (2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)

(3 7 11)
(3 4 11)

(3 4 15)

(3 4 8)
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Hash-Tree – ConstructionHash-Tree Construction

Searching for an itemset
• Start at the root
• At level d: apply the hash function h to the d-th item 

in the itemset

Insertion of an itemset
• search for the corresponding leaf node, and insert 

the itemset into that leaf
• if an overflow occurs:

o Transform the leaf node into an internal node
o Distribute the entries to the new leaf nodes according to 

the hash function
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Hash-Tree – CountingHash-Tree Counting

Search all candidate itemsets contained in a transaction 
T = (t1 t2 ... tn)
At the root

• Determine the hash values for each item t1 t2 ... tn-k in T
• Continue the search in the resulting child nodes

At an internal node at level d (reached after hashing of 
it t )item ti)

• Determine the hash values and continue the search for each 
item tj with j > i  and j ≤ n–k+ite tj t j a d j

At a leaf node
• Check whether the itemsets in the leaf node are contained in 

transaction T
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Counting Itemsets in a Transaction using a Hash-
Tree – Example

Transaction (1, 3, 7, 9, 12) h(K) = K mod 3
0 1 2

3 9 12 1 7
0 1 2 0 1 2 0 1 2

0 1 2

3, 9, 12 1, 7

9, 12 7 3, 9, 12 7

(3 5 7)
(3 5 11)

(7 9 12)
(1 6 11)

(7 8 9)
(1 11 12)

(2 3 8)
(5 6 7)

(2 5 6)
(2 5 7)
(5 8 11)

(3 6 7) (1 4 11)
(1 7 9)

0 1 20 1 2

(2 4 6) (2 4 7)(3 7 11)(3 4 15)

9, 12

(2 4 6)
(2 7 9)

(2 4 7)
(5 7 10)(3 4 11)

(3 4 15)

(3 4 8)

Pruned subtreesTested leaf nodes
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Methods to Improve Apriori’s Efficiency (1)

Hash-based itemset counting [Park, Chen & Yu ‘95]

• Manage support counts by using a hash table (not a hash tree), 
i.e. several k-itemsets share the same hashing bucket in table Hk.

• A k-itemset whose corresponding hashing bucket count is below 
the threshold cannot be frequentthe threshold cannot be frequent

• More efficient access to candidates, but less accurate counting

Transaction reduction [Agrawal & Srikant ‘94]

• A transaction that does not contain any frequent k-itemset is 
useless in subsequent scansuseless in subsequent scans

• Remove these transactions from the database
• More efficient database scans (read accesses) but several write ( )

accesses to the database
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Methods to Improve Apriori’s Efficiency (2)

Partitioning [Savasere, Omiecinski & Navathe ‘95]

• Any itemset that is potentially frequent in DB must be relatively 
frequent in at least one of the partitions of DB (minsup / #partitions)frequent in at least one of the partitions of DB (minsup / #partitions)

• Process the database partition by partition in main memory

• More efficient for partitions but expensive combination of partial results

Sampling [Toivonen ‘96]

• Mining on a subset of given data, lower support threshold + a method 
to determine the completenessto determine the completeness

• Apply the apriori algorithm to a subset of the database

• Count support of the resulting frequent itemsets on the entire database

• Potentially, find new candidates and count them on the database

Dynamic itemset counting

dd did t it t l h ll f th i b t• add new candidate itemsets only when all of their subsets are 
estimated to be frequent
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Generating Rules from Frequent ItemsetsGenerating Rules from Frequent Itemsets

For each frequent itemset X
• For each subset A of X, form a rule A ⇒ (X – A)

Delete those les that do not ha e minim m confidence• Delete those rules that do not have minimum confidence
Computation of the confidence of a rule A ⇒ (X – A) 

)())(( XsupportAXAf d

Store the frequent itemsets and their support in a hash table in

)(
)())((
Asupport
XsupportAXAconfidence =−⇒

Store the frequent itemsets and their support in a hash table in 
main memory no additional database access

l { } f

itemset support

{A} 2
Example: X = {A, B, C}, minConf=60%

• conf (A ⇒ B, C) = 1; conf (B, C ⇒ A) = 1/2
• conf (B ⇒ A, C) = 1/2; conf (A, C ⇒ B) = 1

{B}
{C}

4
5

{A, B} 3conf (B ⇒ A, C)  1/2; conf (A, C ⇒ B)  1
• conf (C ⇒ A, B) = 2/5; conf (A, B ⇒ C) = 2/3

{A, C}
{B, C}

2
4

{A, B, C} 2
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Is Apriori Fast Enough? — Performance BottlenecksIs Apriori Fast Enough? Performance Bottlenecks

The core of the Apriori algorithm:
• Use frequent (k – 1)-itemsets to generate candidate frequent q ( ) g q

k-itemsets
• Use database scan and pattern matching to collect counts for the 

candidate itemsetscandidate itemsets

The bottleneck of Apriori: candidate generation
Huge candidate sets:• Huge candidate sets:

o 104 frequent 1-itemsets will generate 107 candidate 2-itemsets
o To discover a frequent pattern of size 100, e.g., {a1, a2, …, q p , g , { 1, 2, ,

a100}, one needs to generate 2100 ≈ 1030 candidates.

• Multiple scans of database: 
o Needs n+1 scans, n is the length of the longest pattern
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Mining Frequent Patterns Without CandidateMining Frequent Patterns Without Candidate 
Generation

Compress a large database into a compact, Frequent-
Pattern tree (FP-tree) structurePattern tree (FP tree) structure

• highly condensed, but complete for frequent pattern 
miningmining

• avoid costly database scans

Develop an efficient FP tree based frequent patternDevelop an efficient, FP-tree-based frequent pattern 
mining method

A divide and conquer methodology: decompose mining• A divide-and-conquer methodology: decompose mining 
tasks into smaller ones

Avoid candidate generation: sub database test only!• Avoid candidate generation: sub-database test only!
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Construct FP-tree from a Transaction 
DB

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b f h j } {f b}

{}

300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p} (2) (3)

{}

f:4 c:1

Header Table

Item frequency head

Steps:

1 Scan DB once find frequent

(1)
f

b:1b:1c:3

Item  frequency  head 
f 4
c 4
a 3

1. Scan DB once, find frequent 
1-itemsets (single items)

2. Order frequent items in 
p:1a:3

b:1m:2

a 3
b 3
m 3
p 3

q
frequency descending order

3. Scan DB again, construct FP-
t t ti ith t b:1m:2

p:2 m:1

p 3

min_support = 0.5
tree starting with most 
frequent item per transaction
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f f hBenefits of the FP-tree Structure

Completeness: 
b k l tt f t ti• never breaks a long pattern of any transaction

• preserves complete information for frequent pattern 
miningmining

Compactness
reduce irrelevant information infrequent items are gone• reduce irrelevant information—infrequent items are gone

• frequency descending ordering: more frequent items are 
more likely to be sharedmore likely to be shared

• never be larger than the original database (if not count 
node-links and counts)node links and counts)

• Experiments demonstrate compression ratios over 100

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 5031

Mi i F t P tt U i FP tMining Frequent Patterns Using FP-tree

General idea (divide-and-conquer)
• Recursively grow frequent pattern path using the FP-• Recursively grow frequent pattern path using the FP

tree
Method 

• For each item, construct its conditional pattern-base
(prefix paths), and then its conditional FP-tree(p p )

• Repeat the process on each newly created conditional 
FP-tree 

• Until the resulting FP-tree is empty, or it contains only 
one path (single path will generate all the combinations of its 

b th h f hi h i f t tt )sub-paths, each of which is a frequent pattern)
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Major Steps to Mine FP-treeMajor Steps to Mine FP tree

1) Construct conditional pattern base for each node in the 
FP-tree

2) Construct conditional FP-tree from each conditional2) Construct conditional FP tree from each conditional 
pattern-base

3) Recursively mine conditional FP trees and grow3) Recursively mine conditional FP-trees and grow 
frequent patterns obtained so far

If h di i l FP i i l hIf the conditional FP-tree contains a single path, 
simply enumerate all the patterns
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Step 1: From FP-tree to Conditional Pattern 
BBase

Starting at the frequent header table in the FP-tree
Traverse the FP-tree by following the link of each frequent item
Accumulate all of transformed prefix paths of that item to form aAccumulate all of transformed prefix paths of that item to form a 
conditional pattern base

{}Header Table

Conditional pattern bases
item cond pattern base

{}

f:4 c:1

Header Table

Item  frequency  head 
f 4 item cond. pattern base

c f:3
a fc:3

b:1

1

b:1c:3

3

f 4
c 4
a 3
b 3 a fc:3

b fca:1, f:1, c:1
m fca:2, fcab:1

p:1a:3

b:1m:2

b 3
m 3
p 3

p fcam:2, cb:1p:2 m:1
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Properties of FP-tree for Conditional Pattern 
Base Construction

Node-link property

• For any frequent item ai, all the possible frequent y q i, p q
patterns that contain ai can be obtained by following 
ai's node-links, starting from ai's head in the FP-treeai s node links, starting from ai s head in the FP tree 
header

Prefix path propertyPrefix path property

• To calculate the frequent patterns for a node ai in a 
th P l th fi b th f i P d t bpath P, only the prefix sub-path of ai in P need to be 

accumulated, and its frequency count should carry the 
dsame count as node ai.
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Step 2: Construct Conditional FP-treep

For each pattern-base
• Accumulate the count for each item in the base

C h f h f i f h• Construct the FP-tree for the frequent items of the 
pattern base

m-conditional 
pattern base:

fca:2, fcab:1
f

{ }

f:4 c:1
Header Table
Item  frequency  head 
f 4

{ }

f:3

All frequent 
patterns 
concerning m
m, 

b:1

p:1

b:1c:3

a:3

f 4
c 4
a 3
b 3 f:3

c:3
fm, cm, am, 
fcm, fam, cam, 
fcam

p:1a:3

b:1m:2

b 3
m 3
p 3

a:3
m-conditional FP-tree

p:2 m:1
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Mining Frequent Patterns by Creating 
Conditional Pattern-Bases

Conditional FP-treeConditional pattern-baseItem

{(c:3)}|p{(fcam:2), (cb:1)}p

Conditional FP treeConditional pattern baseItem

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

EmptyEmptyf

{(f:3)}|c{(f:3)}c

EmptyEmptyf
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Step 3: Recursively mine the conditionalStep 3: Recursively mine the conditional 
FP-tree

{}

f:3
m conditional FP tree:

c:3

3

m-conditional FP-tree:

a:3

Conditional pattern Conditional pattern Conditional pattern
base of “am”: (fc:3)

{}
base of “cm”: (f:3)

{}

base of “cam”: (f:3)

{}
f:3

c:3
f:3

diti l FP t

{}

f:3
diti l FP tc:3

am-conditional FP-tree
cm-conditional FP-tree cam-conditional FP-tree
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Single FP-tree Path GenerationSingle FP tree Path Generation

Suppose an FP-tree T has a single path P

The complete set of frequent pattern of T can beThe complete set of frequent pattern of T can be 
generated by enumeration of all the combinations of the 
sub paths of Psub-paths of P

{} All frequent patterns

f:3

3

All frequent patterns 
concerning m
m, 
fc:3

a:3

fm, cm, am, 
fcm, fam, cam, 
fcam

m-conditional FP-tree

fcam
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Principles of Frequent Pattern GrowthPrinciples of Frequent Pattern Growth

Pattern growth property

Let be a frequent itemset in DB B be 's• Let α be a frequent itemset in DB, B be α s 
conditional pattern base, and β be an itemset in B.  
Then β is a frequent itemset in DB iff β isThen α ∪ β is a frequent itemset in DB iff β is 
frequent in B.  

“abcdef ” is a frequent pattern, if and only if

• “abcde ” is a frequent pattern, and

• “f ” is frequent in the set of transactions containing 
“abcde ”abcde
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Why Is Frequent Pattern Growth Fast?Why Is Frequent Pattern Growth Fast?

Performance study in [Han, Pei&Yin ’00] shows 

• FP-growth is an order of magnitude faster than 

Apriori, and is also faster than tree-projection

Reasoning

No candidate generation no candidate test• No candidate generation, no candidate test

• Use compact data structure

• Eliminate repeated database scan

• Basic operation is counting and FP-tree building• Basic operation is counting and FP tree building
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FP-growth vs. Apriori: Scalability With the Support 
Th h ldThreshold

90

100
Data set T25I20D10K:
T 25 avg. length of transactions

70

80

c.
)

I 20 avg. length of frequent itemsets
D 10K database size (#transactions)

40

50

60

n 
tim

e(
se

c

D1 FP-grow th runtime

D1 Apriori runtime

20

30

40

R
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D1 Apriori runtime

0

10

20

0 0,5 1 1,5 2 2,5 3
Support threshold(%)
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FP-growth vs. Tree-Projection: Scalability with 
S t Th h ldSupport Threshold

Data set T25I20D100K:

140

Data set T25I20D100K:
T 25 avg. length of transactions
I 20 avg. length of frequent itemsets
D 100K database size (#transactions)

100

120

c.
)

D 100K database size (#transactions)

60

80

im
e 

(s
ec D2 FP-growth

D2 TreeProjection

20

40Ru
nt

0

20

0 0,5 1 1,5 2

Support threshold (%)

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 5043

Presentation of Association Rules: Table FormPresentation of Association Rules: Table Form

DBMiner System
[Han et al. 1996]
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Presentation of Association Rules: Chart FormPresentation of Association Rules: Chart Form

head

body

head

DBMiner System
[Han et al. 1996][ ]
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Presentation of Association Rules: Rule GraphPresentation of Association Rules: Rule Graph

DBMiner Systemy
[Han et al. 1996]
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Iceberg QueriesIceberg Queries

Iceberg query: Compute aggregates over one attribute or 
a set of attributes only for those whose aggregate values 
i b t i th h ldis above certain threshold
Example:

ele t P tID P it ID (P t )select P.custID, P.itemID, sum(P.qty)
from purchase P
group by P.custID, P.itemIDgroup by P.custID, P.itemID
having sum(P.qty) >= 10

Compute iceberg queries efficiently by Apriori:p g q y y p
• First compute lower dimensions
• Then compute higher dimensions only when all the p g y

lower ones are above the threshold
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Interestingness MeasurementsInterestingness Measurements

Objective measures
• Two popular measurements: 
• support and 
• confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]
• A rule (pattern) is interesting if it is
• unexpected (surprising to the user) and/or
• actionable (the user can do something with it)
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Criticism to Support and ConfidenceCriticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]
• Among 5000 students

l b k b ll ( )o 3000 play basketball (=60%)
o 3750 eat cereal (=75%)
o 2000 both play basket ball and eat cereal (=40%)o 2000 both play basket ball and eat cereal ( 40%)

• Rule play basketball ⇒ eat cereal [40%, 66.7%] is 
misleading because the overall percentage of students 

ti l i 75% hi h i hi h th 66 7%eating cereal is 75% which is higher than 66.7%
• Rule play basketball ⇒ not eat cereal [20%, 33.3%]

is far more accurate although with lower support andis far more accurate, although with lower support and 
confidence

• Observation: play basketball and eat cereal are p y
negatively correlated
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Interestingness of Association RulesInterestingness of Association Rules

Goal: Delete misleading association rules
Condition for a rule A ⇒ B 

dBP
AP
BAP

+>
∪ )(
)(
)(

for a suitable threshold d > 0

Measure for the interestingness of a rule

)(

)( BAP )(
)(
)( BP

AP
BAP

−
∪

• The larger the value, the more interesting the 
relation between A and B, expressed by the rule.

Other measures: correlation between A and B 
)()(
)(
BPAP
BAP ∪

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 5050

Criticism to Support and Confidence: 
Correlation of Itemsets

Example 2

X 1 1 1 1 0 0 0 0 Rule Support Confidence
Y 1 1 0 0 0 0 0 0
Z 0 1 1 1 1 1 1 1

pp
X=>Y 25% 50%
X=>Z 37.50% 75%

• X and Y: positively correlated
• X and Z: negatively related
• support and confidence of X=>Z dominates 

We need a measure of dependent or correlated events

)( BAP
)()(
)(

, BPAP
BAPcorr BA

∪
=

P(B|A)/P(B) is also called the lift of rule A => B
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Other Interestingness Measures: InterestOther Interestingness Measures: Interest

)( BAP ∪
Interest (correlation, lift ):

)()(
)(
BPAP
BAP ∪

• taking both P(A) and P(B) in consideration

C l ti l 1 i P(A B) P(B) P(A) if A• Correlation equals 1, i.e. P(A ∪ B) = P(B) ⋅ P(A), if A 
and B are independent events

• A and B negatively correlated, if the value is less than 
1; otherwise A and B positively correlated

X 1 1 1 1 0 0 0 0
Y 1 1 0 0 0 0 0 0

Itemset Support Interest
X,Y 25% 2
X Z 37 50% 0 9

Z 0 1 1 1 1 1 1 1
X,Z 37.50% 0.9
Y,Z 12.50% 0.57
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Chapter 5: Mining Association RulesChapter 5: Mining Association Rules

Introduction
Transaction databases market basket data analysis• Transaction databases, market basket data analysis

Simple Association RulesSimple Association Rules
• Basic notions, apriori algorithm, hash trees, FP-tree, 

interestingness

Hierarchical Association Rules
M ti ti ti l ith i t ti• Motivation, notions, algorithms, interestingness

Extensions and SummaryExtensions and Summary
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Hierarchical Association Rules: MotivationHierarchical Association Rules: Motivation

Problem of association rules in plain itemsets
• High minsup: apriori finds only few rulesg
• Low minsup: apriori finds unmanagably many rules

Exploit item taxonomies (generalizations, is-a hierarchies) which 
exist in many applicationsexist in many applications

shoes

t

clothes

hi t sports shoes bootsouterwear

jackets jeans

shirts

Task: find association rules between generalized items
S t f t f it t ( d t ) i hi h thSupport for sets of item types (e.g., product groups) is higher than 
support for sets of individual items
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Hierarchical Association Rules: Motivating 
Example

Examples

jeans ⇒ bootsjeans ⇒ boots

jackets ⇒ boots

outerwear ⇒ boots Support > minsup 

Support < minsup 

pp p

Characteristics

• Support(“outerwear ⇒ boots”) is not necessarily equal to the 
sum support(“jackets ⇒ boots”) + support( “jeans ⇒ boots”)

If h f l “ b ” d i• If the support of rule “outerwear ⇒ boots” exceeds minsup, 
then the support of rule “clothes ⇒ boots” does, too
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Mining Multi-Level AssociationsMining Multi-Level Associations

Food

Example generalization hierarchy:

Food

breadmilk

A top_down, progressive 
deepening approach:

First find high level strong rules:

3.5%

SunsetFraser

1.5% whitewheat

Wonder
• First find high-level strong rules:

o milk → bread [20%, 60%].
• Then find their lower-level “weaker” rules:

o 1.5% milk → wheat bread [6%, 50%].

Variations at mining multiple-level association rules.g p
• Level-crossed association rules:

o 1.5 % milk → Wonder wheat bread
Association rules with multiple alternative hierarchies:• Association rules with multiple, alternative hierarchies:

o 1.5 % milk → Wonder bread
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Hierarchical Association Rules: 
Basic Notions

[S ik t & A l 1995][Srikant & Agrawal 1995]

Let U = {i1, ..., im} be a universe of literals called items (basic items as { 1, , m} (
well as generalized items)
Let h be a directed acyclic graph defined as follows:

The universe of literals U forms the set of vertices in h• The universe of literals U  forms the set of vertices in h
• A pair (i, j) forms an edge in h if i is a generalization of j

o i is called parent or direct ancestor of j
j i ll d hild di t d d t f io j is called a child or a direct descendant of i

x’ is an ancestor of x and, thus, x is a descendant of x’ wrt. h, if there 
is a path from x’ to x in h
A set of items z’ is called an ancestor of a set of items z if at least one 
item in z’ is an ancestor of an item in z
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Hierarchical Association Rules: 
Basic Notions (2)

Let D be a set of transaction T with T ⊆ U

• Typically, transactions T in D only contain items from the leaves 
f h hof graph h

A transaction T supports an item i ∈ U if i or any descendant of i is 
contained in Tcontained in T

A transaction T supports a set X ⊆ U of items if T supports each item 
in Xin X

Support of a set X ⊆ U of items in D:Support of a set X ⊆ U of items in D:

• Percentage of transactions in D that contain X  as a subset
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Hierarchical Association Rules:
Basic Notions (3)

Hierarchical association rule

• X ⇒ Y with X ⊆ U, Y ⊆ U, X ∩ Y = ∅

• No item in Y is ancestor of an item in X wrt. H
(i.e., avoid rules X ⇒ ancestor(X) where always conf. = 100%)

Support of a hierarchical association rule X ⇒ Y in D:

• Support of the set X ∪ Y in D

Confidence of a hierarchical association rule X ⇒ Y in D:

• Percentage of transactions that support Y among the subset ofPercentage of transactions that support Y among the subset of 

transactions that support X
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Hierarchical Association Rules:
Example

t ti id ittransaction id items
1 shirt
2 jacket, boots
3 jeans, boots
4 sports shoes
5 sports shoes

Support of {clothes}: 4 of 6 = 67%

6 jacket

Support of {clothes, boots}: 2 of 6 = 33%

„shoes ⇒ clothes“: support 33%, confidence 50%„shoes ⇒ clothes :  support 33%, confidence 50% 
„boots ⇒ clothes“:  support 33%, confidence 100% 
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Determination of Frequent Itemsets:
Basic Algorithm for Hierarchical Rules

Idea: Extend the transactions in the database by all the 
ancestors of the items contained

Method:
ll i i h d b• For all transactions t in the database

o Create an empty new transaction t‘
For each item i in t insert i and all its ancestors wrt h in t‘o For each item i in t, insert i and all its ancestors wrt. h in t

o Avoid inserting duplicates

• Based on the new transactions t‘ find frequent• Based on the new transactions t , find frequent 
itemsets for simple association rules (e.g., by using the 
apriori algorithm)
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Determination of Frequent Itemsets: 
Optimization of Basic Algorithm

Precomputation of ancestors

• Additional data structure that holds the association of each item to 
the list of its ancestors: item → list of successorsthe list of its ancestors:  item → list of successors

• supports a more efficient access to the ancestors of an item

Filtering of new ancestors

• Add only ancestors to a transaction which occur in an element of 
the candidate set Ck of the current iteration

• Example
o Ck = {{clothes, shoes}}

o Substitute „jacketABC“ by „clothes“
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Determination of Frequent Itemsets: 
Optimization of Basic Algorithm (2)

Algorithm Cumulate: Exclude redundant itemsets

• Let X be a k-itemset, i an item and i‘ an ancestor of i

• X = {i, i‘, …}

• Support of X – {i‘ } = support of XSupport of X {i  }  support of X

• When generating candidates, X can be excluded

k itemsets that contain an item i and an ancestor i‘ of i as well• k-itemsets that contain an item i and an ancestor i‘ of i as well 

are not counted
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Multi-level Association: Redundancy FilteringMulti level Association: Redundancy Filtering

Some rules may be redundant due to “ancestor” relationships between 
items.
ExampleExample

• milk ⇒ wheat bread    [support = 8%, confidence = 70%]
• 1.5% milk ⇒ wheat bread [support = 2%, confidence = 72%]

We say the first rule is an ancestor of the second rule.
A rule is redundant if its support is close to the “expected” valueA rule is redundant if its support is close to the “expected” value, 
based on the rule’s ancestor.
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Multi-Level Mining: Progressive DeepeningMulti-Level Mining: Progressive Deepening

A top-down, progressive deepening approach:
• First mine high-level frequent items:

o milk (15%) bread (10%)o milk (15%), bread (10%)

• Then mine their lower-level “weaker” frequent itemsets:
o 1.5% milk (5%), wheat bread (4%)

Different min_support threshold across multi-levels lead to different 
algorithms:algorithms:

• If adopting the same min_support across multi-levels
o toss t if any of t’s ancestors is infrequent.

• If adopting reduced min_support at lower levels
o then examine only those descendents whose ancestor’s support is 

frequent/non-negligible.q / g g
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Progressive Refinement of Data Mining QualityProgressive Refinement of Data Mining Quality

Wh i fi t?Why progressive refinement?
• Mining operator can be expensive or cheap, fine or 

roughg
• Trade speed with quality: step-by-step refinement.

Superset coverage property: 
ll h i i ll f l i i• Preserve all the positive answers—allow a false positive 

test but not a false negative test.
Two- or multi-step mining:Two or multi step mining:

• First apply rough/cheap operator (superset coverage)
• Then apply expensive algorithm on a substantially 

d d did t t (K ki & H SSD’95)reduced candidate set (Koperski & Han, SSD’95).
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Determination of Frequent Itemsets: 
Stratification

Alternative to basic algorithm (i.e., to apriori algorithm)

Stratification: build layers from the sets of itemsets

Basic observation

If itemset X´ does not have minimum support and X´ is an• If itemset X does not have minimum support, and X is an 
ancestor of X, then X does not have minimum support, too.

Method

• For a given k, do not count all k-itemsets simultaneously

• Instead, count the more general itemsets first, and count the more 
specialized itemsets only when required
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Determination of Frequent Itemsets: 
Stratification (2)

Example
• Ck = {{clothes, shoes}, {outerwear, shoes}, {jackets, shoes}}Ck  {{clothes, shoes}, {outerwear, shoes}, {jackets, shoes}}
• First, count the support for {clothes, shoes}
• Only if support exceeds minsup, count the support for {outerwear, 

shoes}shoes}

Notions
• Depth of an itemset

o For itemsets X from a candidate set Ck without direct ancestors in Ck: 
depth(X) = 0

o For all other itemsets X in Ck:
depth(X) = 1 + max {depth(X‘), X‘∈ Ck is a parent of X}

• (Ck
n): set of itemsets of depth n from Ck, 0 ≤ n ≤ maxdepth t( k ) p k, p
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Determination of Frequent Itemsets: 
Algorithm Stratify

Method
• Count the itemsets from Ck

0

Remove all descendants of elements from (C 0) that do not have• Remove all descendants of elements from (Ck
0) that do not have 

minimum support
o Count the remaining elements in (Ck

1)
o …

Trade-off between number of itemsets for which support is countedTrade off between number of itemsets for which support is counted 
simultaneously and number of database scans

If |Ck
n| is small, then count candidates of depth (n, n+1, ..., t) at once
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Determination of Frequent Itemsets: 
Stratification – Problems

Problem of algorithm Stratify
• If many itemsets with small depth share the minimum support, 

l f it t f hi h d th l d donly few itemsets of a higher depth are excluded

Improvements of algorithm Stratifyp g y
• Estimate the support of all itemsets in Ck by using a sample
• Let Ck‘ be the set of all itemsets for which the sample suggests 

that all or at least all their ancestors in Ck share the minimumthat all or at least all their ancestors in Ck share the minimum 
support

• Determine the actual support of the itemsets in Ck‘ by a single 
database scandatabase scan

• Remove all descendants of elements in Ck‘ that have a support 
below the minimum support from the set Ck“ = Ck – Ck‘
D t i th t f th i i it t i C “ i• Determine the support of the remaining itemsets in Ck“ in a 
second database scan
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Determination of Frequent Itemsets: 
Stratification – Experiments

T t d tTest data
• Supermarket data

o 548,000 items; item hierarchy with 4 levels; 1.5M transactionsy
• Department store data

o 228,000 items; item hierarchy with 7 levels; 570,000 transactions

Results
• Optimizations of algorithms cumulate and stratify can be combined
• cumulate optimizations yield a strong efficiency improvement
• Stratification yields a small additional benefit only
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Progressive Refinement Mining of 
Spatial Association Rules

Hierarchy of spatial relationship:Hierarchy of spatial relationship:
• “g_close_to”: near_by, touch, intersect, contain, etc.

First search for rough relationship and then refine it• First search for rough relationship and then refine it.
Two-step mining of spatial association:

Step 1: rough spatial computation (as a filter)• Step 1: rough spatial computation (as a filter) 
o Using MBR or R-tree for rough estimation.

• Step2: Detailed spatial algorithm (as refinement)• Step2: Detailed spatial algorithm (as refinement)
o Apply only to those objects which have passed the rough 

spatial association test (no less than min_support)
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Interestingness of Hierarchical 
Association Rules – Notions clothes ⇒ shoes

:
jackets ⇒ shoes

Rule X´ ⇒ Y´ is an ancestor of rule X ⇒ Y if:

Itemset X´ is an ancestor of itemset X or itemset Y´ is an

jackets ⇒ shoes

• Itemset  X is an ancestor of itemset X or itemset Y is an 
ancestor of itemset Y

Rule X´ ⇒ Y´ is a direct ancestor of rule X ⇒ Y in a set of rules if:

• Rule X´ ⇒ Y‘ is an ancestor of rule X ⇒ Y, and

• There is no rule X“ ⇒ Y“ such that X“ ⇒ Y“ is an ancestor of
X ⇒ Y and X´ ⇒ Y´ is an ancestor of X“ ⇒ Y“

A hierarchical association rule X ⇒ Y is called R-interesting if: 

Th di f X Y• There are no direct ancestors of X ⇒ Y or

• Actual support is larger than R times the expected support or

Actual confidence is larger than R times the expected• Actual confidence is larger than R times the expected 
confidence
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Interestingness of Hierarchical 
Association Rules – Example

Example
Let R = 2

Item Support
clothes 20• Let R = 2 clothes 20

outerwear 10
jackets 4

No. rule support R-interesting?

1 clothes ⇒ shoes 10 yes: no ancestors
2 outerwear ⇒ shoes 9 yes: Support >> R *y pp

expected support (wrt. rule 1)
3 jackets ⇒ shoes 4 no: Support < R * expected

support (wrt rule 2)support (wrt. rule 2)
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Hierarchical Association Rules –
How to Choose Minimum Support?

Uniform Support
minsup = 5 %

outerwear
support = 10 %

minsup = 5 %
jackets

s ppo t 6 %
jeans

s ppo t 4 %

Reduced Support

p
support = 6 % support = 4 % 

outerwear
(Variable Support)

outerwear
support = 10 % minsup = 5 %

jackets
support = 6 %

jeans
support = 4 % 

minsup = 3 %
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Chapter 5: Mining Association RulesChapter 5: Mining Association Rules

Introduction
Transaction databases market basket data analysis• Transaction databases, market basket data analysis

Simple Association RulesSimple Association Rules
• Basic notions, apriori algorithm, hash trees, FP-tree, 

interestingness

Hierarchical Association Rules
M ti ti ti l ith i t ti• Motivation, notions, algorithms, interestingness

Extensions and SummaryExtensions and Summary
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Multi-Dimensional Association: ConceptsMulti-Dimensional Association: Concepts

Single-dimensional rules:
o buys(X, “milk”) ⇒ buys(X, “bread”)

Multi-dimensional rules: ≥ 2 dimensions or predicates
• Inter-dimension association rules (no repeated predicates)( p p )

o age(X,”19-25”)  ∧ occupation(X,“student”) ⇒ buys(X,“coke”)
• hybrid-dimension association rules (repeated predicates)

o age(X ”19-25”) ∧ buys(X “popcorn”) ⇒ buys(X “coke”)o age(X, 19 25 ) ∧ buys(X, popcorn ) ⇒ buys(X, coke )

Categorical Attributes
fi it b f ibl l d i l• finite number of possible values, no ordering among values

Quantitative AttributesQ
• numeric, implicit ordering among values
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Techniques for Mining q g
Multi-Dimensional Associations

Search for frequent k-predicate set:

• Example: {age, occupation, buys} is a 3-predicate set.

• Techniques can be categorized by how age are treated.

1. Using static discretization of quantitative attributes

Quantitative attributes are statically discretized by using• Quantitative attributes are statically discretized by using 
predefined concept hierarchies.

2. Quantitative association rules2. Quantitative association rules

• Quantitative attributes are dynamically discretized into 
“bins”based on the distribution of the data.

3. Distance-based association rules

• This is a dynamic discretization process that considers the 
di t b t d t i tdistance between data points.
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Why Is the Big Pie Still There?Why Is the Big Pie Still There?

From association to correlation and causal structure 
analysis

Association does not necessa il impl co elation o ca sal• Association does not necessarily imply correlation or causal 
relationships

From intra-transaction association to inter-transactionFrom intra transaction association to inter transaction 
associations

• E.g., break the barriers of transactions (Lu, et al. TOIS’99). 

From association analysis to classification and clustering 
analysis

• E.g, clustering association rules

Constraint-based mining of associations 
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SSummary

Association rule mining 

• probably the most significant contribution from the 
database community in KDD

• A large number of papers have been publishedg p p p

Many interesting issues have been explored

An interesting research directionAn interesting research direction

• Association analysis in other types of data: spatial 
data multimedia data time series data etcdata, multimedia data, time series data, etc.
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Chapter 6: Concept Description and GeneralizationChapter 6: Concept Description and Generalization

What is concept description?

Descriptive statistical measures in large databasesp g

Data generalization and summarization-based 
characterizationcharacterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between 
different classes

Summary
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What is Concept Description?What is Concept Description?

Descriptive vs. predictive data mining
• Descriptive mining: describes concepts or task-relevant 

d t t i i ti i f tidata sets in concise, summarative, informative, 
discriminative forms
Predictive mining: Based on data and analysis• Predictive mining: Based on data and analysis, 
constructs models for the database, and predicts the 
trend and properties of unknown datatrend and properties of unknown data

Concept description: 
• Characterization: provides a concise and succinct• Characterization: provides a concise and succinct 

summarization of the given collection of data
• Comparison (Discrimination): provides descriptions p ( ) p p

comparing two or more collections of data
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Concept Description vs. OLAPp p

OLAP
• restricted to a small number of dimension 

and measure types
• user-controlled process• user controlled process

C t d i tiConcept description
• can handle complex data types of the 

attributes and their aggregations
• a more automated processp
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Concept Description vs. 
Learning-from-example Paradigm

Difference in philosophies and basic assumptions

• Positive and negative samples in learning-from-
example: positive used for generalization, negative -
for specialization

• Positive samples only in data mining: hence 
generalization-based, to drill-down backtrack the 
generalization to a previous stategeneralization to a previous state

Difference in methods of generalizations

• Machine learning generalizes on a tuple by tuple basis

• Data mining generalizes on an attribute by attribute
basis (see attribute-oriented induction)
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Chapter 6: Concept Description and GeneralizationChapter 6: Concept Description and Generalization

What is concept description? 

Descriptive statistical measures in large databasesp g

Data generalization and summarization-based 
characterizationcharacterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between 
different classes

Summary
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Mining Data Dispersion CharacteristicsMining Data Dispersion Characteristics

Motivation
• To better understand the data: central tendency, variation and 

spreadspread

Data dispersion characteristics
• median, max, min, quantiles, outliers, variance, etc.median, max, min, quantiles, outliers, variance, etc.

Numerical dimensions correspond to sorted intervals

• Data dispersion: analyzed with multiple granularities of precision

• Boxplot or quantile analysis on sorted intervals

Dispersion analysis on computed measures
• Folding measures into numerical dimensions

• Boxplot or quantile analysis on the transformed cube
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Measuring the Central Tendency (1)Measuring the Central Tendency (1)

Mean — (weighted) arithmetic mean ∑=
n

ixx 1 ∑ == i
n

i i
w

xw
x 1

Median — a holistic measure
• Middle value if odd number of values or average of the middle two

∑
=i

in 1 ∑ =

n

i i
w

w
1

• Middle value if odd number of values, or average of the middle two 
values otherwise

• Estimate the median for grouped data by interpolation:

( )( )
c

f
fn

Lmedian
median

lower ⋅








 −
+≈ ∑2/

1 fmedian 
L1 — lowest value of the class containing the median
n — overall number of data values

Σf lower — sum of the frequencies of all classes that are lower than the median
fmedian — frequency of the median class

i e of the medi n l inte l
L1 estim. of median

c — size of the median class interval

Σf lower fmedian
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Measuring the Central Tendency (2)Measuring the Central Tendency (2)

Mode
• Value that occurs most frequently in the data
• Well suited for categorical (i e non-numeric) data• Well suited for categorical (i.e., non-numeric) data
• Unimodal, bimodal, trimodal, …: there are 1, 2, 3, … modes in 

the data (multimodal in general), cf. mixture models
• There is no mode if each data value occurs only once
• Empirical formula for unimodal frequency curves that are 

moderately skewed:moderately skewed:
mean – mode ≈ 3 · (mean – median)

Midrange
• Average of the largest and the smallest values in a data set:

(max – min) / 2
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Measuring the Dispersion of DataMeasuring the Dispersion of Data

Quartiles, outliers and boxplots

• Quartiles: Q1 (25th percentile), Q3 (75th percentile)

Inter quartile range: IQR Q Q• Inter-quartile range: IQR = Q3 – Q1 

• Five number summary: min, Q1, median, Q3, max

• Boxplot (next slide): ends of the box are the quartiles median is• Boxplot (next slide): ends of the box are the quartiles, median is 
marked, whiskers (Barthaare, Backenbart); plot outlier individually

• Outlier: usually, values that are more than 1.5 x IQR below Q11

or above Q3

Variance and standard deviation

• Variance (algebraic, scalable computation):

St d d d i ti t f i

( )∑
=

−
−

=
n

i
i xx

n 1

22

1
1σ

• Standard deviation σ: square root of variance
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Boxplot AnalysisBoxplot Analysis

Five-number summary of a distribution
• Minimum, Q1, Median, Q3, Maximum

0% 25% 50% 75% 100% q antiles (“25 pe centile” etc )• = 0%, 25%, 50%, 75%, 100%-quantiles (“25-percentile”, etc.)

Boxplot maxBoxplot
• Data is represented with a box
• The ends of the box are at the first and third 

max
Q3

e e ds o e bo a e a e s a d d
quartiles, i.e., the height of the box is IQR

• The median is marked by a line within the box
median

• Whiskers: two lines outside the box extend to 
Minimum and Maximum

Q1

min
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Boxplot ExamplesBoxplot Examples

Unit price ($)

80.0
max

70.0

60.0

75%

50.0

40.0
median

30.0

20.0

25%

10.0

0.0 Product A Product B Product C

min

oduct oduct oduct C
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Visualization of Data Dispersion: 
Boxplot Analysis
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Mining Descriptive Statistical Measures in g p
Large Databases

1,1
alternatives:

Variance

( )  2111 n
May be computed in a single pass!

nn
,

1−alternatives:

( ) ( ) 



 −

−
=−

−
= ∑ ∑∑

=

22

1

22 1
1

1
1

1
ii

i
i x

n
x

n
xx

n
σ

Requires two passes but is 
numerically much more stable

Standard deviation: the square root of the variance
• Measures the spread around the mean
• It is zero if and only if all the values are equal
• Both the deviation and the variance are algebraic
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Histogram Analysisg y

Graph displays of basic statistical class descriptions
• Frequency histograms 

o A univariate graphical method
o Consists of a set of rectangles that reflect the counts 

(frequencies) of the classes present in the given data(frequencies) of the classes present in the given data
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Quantile PlotQuantile Plot

Di l ll f h d ( ll i hDisplays all of the data (allowing the user to assess 
both the overall behavior and unusual occurrences)
Plots quantile informationPlots quantile information

• The q-quantile xq indicates the value xq for which the fraction q
of all data is less than or equal to xq (called percentile if q is a 
percentage); e g median 50% quantile or 50th percentilepercentage); e.g., median = 50%-quantile or 50th percentile.…

140
120) 120
100
80
60s 

pr
ic

e 
($

)

0 00 0 25 0 50 0 75 1 00

40
20
0

U
ni

ts

0.00 0.25 0.50 0.75 1.00
min Q1 median Q3 max

f-value
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Quantile-Quantile (Q-Q) PlotQuantile-Quantile (Q-Q) Plot

Graphs the quantiles of one univariate distribution 
against the corresponding quantiles of another
All th t i h th th i hift i iAllows the user to view whether there is a shift in going 
from one distribution to another
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Scatter plotScatter plot

Provides a first look at bivariate data to see clusters of 
points, outliers, etc
E h i f l i t t d i f di t dEach pair of values is treated as a pair of coordinates and 
plotted as points in the plane
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Loess Curve (local regression)Loess Curve (local regression)

Adds a smooth curve to a scatter plot in order to 
provide better perception of the pattern of dependence
Loess curve is fitted by setting two parameters: a 
smoothing parameter, and the degree of the 
polynomials that are fitted by the regressionpolynomials that are fitted by the regression
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Chapter 6: Concept Description and GeneralizationChapter 6: Concept Description and Generalization

What is concept description? 

Descriptive statistical measures in large databasesp g

Data generalization and summarization-based 
characterizationcharacterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between 
different classes

Summary
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Data Generalization and Summarization-
based Characterization

D li iData generalization
• A process which abstracts a large set of task-relevant 

data in a database from low conceptual levels todata in a database from low conceptual levels to 
higher ones.

1

Conceptual levels
2
3
4

• Approaches:

5

o Data cube approach (OLAP approach)
o Attribute-oriented induction approach

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 6022

Characterization: Data Cube Approach 
(without using AO-Induction)

Perform computations and store results in data cubes

Strength

An efficient implementation of data generalization• An efficient implementation of data generalization

• Computation of various kinds of measures
o e g count( ) sum( ) average( ) max( )o e.g., count( ), sum( ), average( ), max( )

• Generalization and specialization can be performed on a data 
cube by roll-up and drill-down

Limitations

• handle only dimensions of simple nonnumeric data and 
f i l t d i lmeasures of simple aggregated numeric values.

• Lack of intelligent analysis, can’t tell which dimensions should 
be used and what levels should the generalization reachbe used and what levels should the generalization reach
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Attribute-Oriented Induction

Proposed in 1989 (KDD ‘89 workshop)
Not confined to categorical data nor particular measures.
How is it done?

• Collect the task-relevant data (initial relation) using a 
l i l d brelational database query.

• Perform generalization by either attribute removal or 
att ib te gene ali ationattribute generalization.

• Apply aggregation by merging identical, generalized 
tuples and accumulating their respective countstuples and accumulating their respective counts.

• Interactive presentation with users.
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Attribute-Oriented Induction: Basic PrinciplesAttribute Oriented Induction: Basic Principles

Data focusing: task-relevant data, including dimensions, 
and the result is the initial relation.
Att ib t l tt ib t A ifAttribute-removal: remove attribute A if 
1) there is a large set of distinct values for A but there is 

no generalization operator (concept hierarchy) on A orno generalization operator (concept hierarchy) on A, or 
2) A’’s higher level concepts are expressed in terms of 

other attributes (e g street is covered by cityother attributes (e.g. street is covered by city, 
province_or_state, country).

Attribute-generalization: if there is a large set of distinctAttribute generalization: if there is a large set of distinct 
values for A, and there exists a set of generalization 
operators (i.e., a concept hierarchy) on A, then select an 
operator and generalize A. 
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Attribute Generalization ControlAttribute Generalization Control

Problem: How many distinct values for an attribute?

• overgeneralization (values are too high-level) or

• undergeneralization (level not sufficiently high)

• both yield rules of poor usefulness.y p

Two common approachesTwo common approaches

• Attribute-threshold control:
default or user-specified typically 2-8 valuesdefault or user specified, typically 2 8 values

• Generalized relation threshold control: 
control the size of the final relation/rule e g 10-30control the size of the final relation/rule, e.g., 10-30
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Attribute-Oriented Induction: Basic AlgorithmAttribute Oriented Induction: Basic Algorithm

l l f k l d dInitialRelation: Query processing of task-relevant data, deriving 
the initial working relation.

P epa eFo Gene ali ation (P eGen) Based on the anal sis of thePrepareForGeneralization (PreGen): Based on the analysis of the 
number of distinct values in each attribute, determine 
generalization plan for each attribute: removal? or generalizationgeneralization plan for each attribute: removal? or generalization 
to which level of abstraction in the concept hierarchy?

PrimeGeneralization (PrimeGen): Based on the prepared plan, ( ) p p p ,
perform generalization to the right level to derive a “prime 
generalized relation”, accumulating the counts.

Presentation: User interaction: (1) adjust levels by drilling, (2) 
pivoting, (3) mapping into rules, cross tabs, visualization 

t tipresentations.
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Example: Given Concept HierarchiesExample: Given Concept Hierarchies
allgender:allname: allPhone #:

no (real)

malefemaleW.WhiteA.Abbeck………………… 98763158932 …………………

no (real) 
hierarchies

all

GoodExcellent

grade_point_
avg:

Very_good

all

age_range: 20-25 25-3015-20
set grouping 
hierarchies

allmajor:

0.7…1.4 1.5…2.4 2.5…3.4age: 191817 25 26 27 28 2920 21 22 23 24

all

engi-arts & 

major:

business

schema 
hierarchies

allbirth_place:

EuropeN_America Asia
neeringsciences

MathCS Physics EE Civil eng.

GermanyCanada

Vancouver Toronto Aachen Munich

USA France

y _ gVancouver Toronto Aachen Munich
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Example: Initial RelationExample: Initial Relation
Name Gender Major Birth-Place Birth_date Residence Phone # GPA 

Jim M CS Vancouver BC 8-12-81 3511 Main St 687-4598 3 67Jim 
Woodman 

  M  CS Vancouver,BC,
Canada 

8 12 81 3511 Main St., 
Richmond 

687 4598 3.67

Scott 
Lachance 

  M   CS Montreal, Que, 
Canada 

28-7-80 345 1st Ave., 
Richmond 

253-9106 3.70 

Laura Lee F Physics Seattle, WA, USA 25-8-75 125 Austin Ave., 420-5232 3 83Laura Lee 
… 

  F 
… 

Physics
… 

Seattle, WA, USA
… 

25 8 75 
… 

125 Austin Ave., 
Burnaby 
… 

420 5232
… 

3.83
… 

Removed Retained Sci,Eng,
Bus 

Country Age range City Removed Excl,
VG,..

 

Name: large number of distinct values, no hierarchy—removed.
Gender: only two distinct values—retained.

l h h l d

 

Major: many values, hierarchy exists—generalized to Sci.,Eng.,Bus.
Birth_place: many values, hierarchy—generalized, e.g., to country.
Birth date: many values—generalized to age (or age range).Birth_date: many values generalized to age (or age_range).
Residence: many streets and numbers—generalized to city.
Phone number: many values, no hierarchy—removed.
G d i t (GPA) hi h i t li d t dGrade_point_avg (GPA): hierarchy exists—generalized to good….
Count: additional attribute to aggregate base tuples
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Attribute-oriented Induction-Implementation(1)Attribute-oriented Induction-Implementation(1)

Input parameters
• DB — a relational database
• DMQuery — a data mining query
• Attributes — a list of attributes ai

G li i ( ) f hi hi• Generalization(ai) — a set of concept hierarchies or 
generalization operators on attributes ai

AttributeGeneralizationThreshold(a ) — attribute• AttributeGeneralizationThreshold(ai) — attribute 
generalization thresholds for each ai

Output parametersp p
• P — a prime generalized relation

Procedure InitialRelation (DMQuery, DB)
• Fetch the task-relevant data into W, the working relation.
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Attribute-oriented Induction-Implementation(2)Attribute-oriented Induction-Implementation(2)

Procedure PrepareForGeneralization (W)
• Scan working relation W and collect the distinct values for each 

attribute aiattribute ai

o If W is very large, a sample of W may be used instead.
• For each attribute ai:

o Determine whether ai  should be removed
o If not, compute the minimum desired level Li based on the 

attribute threshold and determine the mapping-pairs (v v‘) forattribute threshold, and determine the mapping-pairs (v, v ) for 
distinct values v of ai in A and the corresponding generalized 
values v‘ at level Li.
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Attribute-oriented Induction-Implementation(3)Attribute-oriented Induction-Implementation(3)

Procedure PrimeGeneralization (W)
• Derive the prime_generalized_relation P by replacing each 

value v in W by the corresponding v‘ in the mapping whilevalue v in W by the corresponding v in the mapping while 
maintaining count (and other aggregate values, if any).

• Depending on the number of distinct values at the prime p g p
relation level, P can be coded as a sorted relation or as a 
multidimensional array.

Variation of the algorithm [Han, Cai & Cercone 1993]

• Rather than performing PrepareForGeneralization and 
PrimeGeneralization in a sequence, the prime relation P
can be updated for each attribute selection step. Then, the 
order of attribute selection may control the processorder of attribute selection may control the process.
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Order of Attribute SelectionOrder of Attribute Selection

Strategies to select the next attribute for generalization
Aiming at minimal degree of generalizationg g g

• Choose attribute that reduces the number of tuples the most.
• Useful heuristics: choose attribute ai  with highest number mi  of 

di i ldistinct values.

Aiming at similar degree of generalization for all 
attributesattributes

• Choose the attribute currently having the least degree of 
generalization

User-controlled
• Domain experts may specify appropriate priorities for the 

l f bselection of attributes
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Presentation of Generalized ResultsPresentation of Generalized Results

Generalized relation
• Relations where some or all attributes are generalized, with counts 

or other aggregation values accumulatedor other aggregation values accumulated.

Cross tabulation
• Mapping results into cross tabulation form.Mapping results into cross tabulation form.

Visualization techniques
• Pie charts, bar charts, curves, cubes, and other visual forms.

Quantitative characteristic rules
• Mapping generalized result into characteristic rules with quantitative 

information associated with it, e.g.,

%]53:["")(
)()(

tCanadaxregionbirth
xmalexgrad

∨=
⇒∧

t: typicality weight 
(see next slide)

.%]47:["")(_
%]53:[)(_

tforeignxregionbirth
tCanadaxregionbirth

=
∨=
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Quantitative Characteristic RulesQuantitative Characteristic Rules

T pi alit eight (t eight) of the disj n ts in a leTypicality weight (t_weight) of the disjuncts in a rule
• {q1, …, qn}: generalized tuples that represent the target class
• t weight: fraction of tuples representing the target class in initialt_weight: fraction of tuples representing the target class in initial 

relation covered by a single generalized tuple qa

• definition: ( ) ( )
= n

a
a

qqweightt count

• range is [0…1]
Form of a Quantitative Characteristic Rule: (cf crosstab)

( )
( )∑

=

n

i
i

a

q
q_ g

1
count

Form of a Quantitative Characteristic Rule:  (cf. crosstab)

( )
( ) [ ] ( ) [ ]XX

XX
ditiditi

sstarget_cla, ⇒∀

• Disjunction represents a necessary condition of the target class
N t ffi i t t l th t t th diti ld b l t

( ) [ ] ( ) [ ]mm wtXwtX :condition:condition 11 ∨∨ K

• Not sufficient: a tuple that meets the conditions could belong to 
another class
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Presentation—Generalized RelationPresentation Generalized Relation

Example: A generalized relation for the sales in 2002

Location Item Sales 
(in million $)

Count 
(in thousands)

Asia TV 15 300Asia
Europe
North_America

TV
TV
TV

15
12
28

300
250
450

Asia
Europe
N th A i

Computer
Computer

t

120
150
200

1000
1200
1800North_America computer 200 1800
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Presentation—CrosstabPresentation Crosstab

Example: A crosstab for the sales in 2002

Location \ item TV Computer Both_items

sales count sales count sales countsales count sales count sales count

Asia
Europe

15
12

300
250

120
150

1000
1200

135
162

1300
1450u ope

North_America 28
50

450
50

200
00

1800
6

228
50

2250

all regions 45 1000 470 4000 525 5000all_regions 45 1000 470 4000 525 5000

count corresponds to t weightcount corresponds to t_weight
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Example: Generalized Relationp
Name Gender Major Birth-Place Birth_date Residence Phone # GPA
Jim Woodman M CS Vancouver, BC, 8-12-81 3511 Main St., 687-4598 3.67

Initial 
Relation

Canada Richmond
Scott Lachance M CS Montreal, Que, 

Canada
28-7-80 345 1st Ave., 

Richmond
253-9106 3.70

Laura Lee F Physics Seattle, WA, 25-8-75 125 Austin 
b

420-5232 3.83
USA Ave., Burnaby

… … … … … … … …

Removed Retained Sci,Eng,
Bus

Country Age range City Removed Excl,
VG

Prime 
Generalized

Gender Major Birth_region Age_range Residence GPA Count
M Science Canada 20-25 Richmond Very-good 16
F S i F i 25 30 B b E ll t 22

Bus VG,..

Generalized 
Relation

Birth Region

F Science Foreign 25-30 Burnaby Excellent 22
… … … … … … …

Crosstab for 
Generalized 
Relation

Birth_Region

Gender
Canada Foreign Total

M 16 14 30
F 10 22 32

Total 26 36 62
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AOI: Implementation by Cube Technologyp y gy

Alternative Approaches:
Construct a data cube on-the-fly for the given data 

i imining query
• Facilitate efficient drill-down analysis
• May increase the response time• May increase the response time
• A balanced solution: precomputation of “subprime” relation

Use a predefined & precomputed data cube
• Construct a data cube beforehand
• Facilitate not only the attribute-oriented induction, but also 

attribute relevance analysis, dicing, slicing, roll-up and drill-down
• Cost of cube computation and the nontrivial storage overhead• Cost of cube computation and the nontrivial storage overhead
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Incremental GeneralizationIncremental Generalization

Database update: Rnew = Rold ∪ ∆R

Incremental Mining: update generalized relations (small) directly 
ith t l i li ti t R (l )without applying generalization to Rnew (large)

∆R             
Rold Rnew

update

Gen. Gen.

Rgenold Rgennew

∆R             
update

Gen. Gen.

Requirements
• Efficiency: significantly faster update of generalized relations• Efficiency: significantly faster update of generalized relations
• Correctness: update(generalize(R)) = generalize(update(R))

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 6040

Incremental Generalization—AlgorithmsIncremental Generalization Algorithms

Insertion of new tuples

• Generalize ∆R to the same level of abstraction as in the 
generalized relation R to derive ∆Rgeneralized relation Rgen to derive ∆Rgen

• Union Rgen ∪ ∆ Rgen, i.e., merge counts and other statistical 
information to produce a new relation Rgen’p gen

• If relation threshold (i.e., # tuples) is exceeded, further apply 
the attribute-oriented generalization to Rgen’

Deletion of tuples

• Generalize ∆R to the same level of abstraction in the generalized 
relation R to derive ∆Rrelation Rgen to derive ∆Rgen

• Remove ∆Rgen from Rgen, i.e., decrease counts and maintain 
other statistical information to produce Rgen’p gen

• Relation threshold is ok but overgeneralization may occur
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Incremental Generalization—
Problem of Overgeneralization

Overgeneralization: incremental deletion yields a higher level 
of abstraction than generalizing the updated base relation.

Example
Name Gender Age

l Gender Age Range CountAnn Female 47
Ben Male 45
Clara Female 48
Dan Male 62

Delete 
(Ben,male,45)

Gender Age_Range Count

Female Mid_aged 2

Male Senior 1
Gen.

Dan Male 62

Gen. ≠!
Age_range Count

Mid_aged 3

Senior 1

Age_Range Count

Mid_aged 2

Senior 1

Delete 
(mid_aged,1)

Senior 1 Senior 1
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Incremental Generalization—Anchor RelationIncremental Generalization Anchor Relation

Approach to prevent from overgeneralization

• Use an intermediate anchor relation, i.e., an relation that is , ,
generalized to an level of abstraction below the desired final 
level of abstraction.

Procedure

• Generalize updates ∆R to the level of the anchor relation

• Apply the generalized updates ∆Rgen to the anchor relation

• Generalize the updated anchor relation to the final level

Base relation Anchor 
relation Rel.gen

∆R             
update

Primary 
generalization relation geng
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Chapter 6: Concept Description and GeneralizationChapter 6: Concept Description and Generalization

What is concept description? 

Descriptive statistical measures in large databasesp g

Data generalization and summarization-based 
characterizationcharacterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between 
different classes

Summary

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 6044

Characterization vs OLAPCharacterization vs. OLAP

Shared concepts:

• Presentation of data summarization at multiple levels of 
abstraction.

• Interactive drilling, pivoting, slicing and dicing.g, p g, g g

Differences:

• Automated desired level allocation.• Automated desired level allocation.

• Dimension relevance analysis and ranking when there 
are many relevant dimensionsare many relevant dimensions.

• Sophisticated typing on dimensions and measures.

Analytical characterization: data dispersion analysis• Analytical characterization: data dispersion analysis.
Streuung
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Attribute Relevance Analysisy

Wh ? S f if i li iWhy?—Support for specifying generalization parameters
• Which dimensions should be included?  

How high level of generalization?• How high level of generalization?
• Automatic vs. interactive

Reduce number of attributes• Reduce number of attributes
easy to understand patterns / rules

What?—Purpose of the methodp
• statistical method for preprocessing data

o filter out irrelevant or weakly relevant attributes 
o retain or rank the relevant attributes

• relevance related to dimensions and levels
analytical characterization analytical comparison• analytical characterization, analytical comparison
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Attribute relevance analysis (cont’d)y ( )

How?—Steps of the algorithm:

• Data Collection

• Analytical Generalization
o Use information gain analysis (e.g., entropy or othero Use information gain analysis (e.g., entropy or other 

measures) to identify highly relevant dimensions and levels.

• Relevance Analysis• Relevance Analysis
o Sort and select the most relevant dimensions and levels.

Attribute oriented Induction for class description• Attribute-oriented Induction for class description
o On selected dimension/level
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Relevance MeasuresRelevance Measures 

Quantitative relevance measure determines the 
classifying power of an attribute within a set of data.

Competing methods
i f i i ( 3) di d h• information gain (ID3) — discussed here

• gain ratio (C4.5)
• gini index (IBM Intelligent Miner)
• χ2 contingency table statistics
• uncertainty coefficient
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Information-Theoretic ApproachInformation Theoretic Approach

Decision tree
• each internal node tests an attribute
• each branch corresponds to attribute value
• each leaf node assigns a classification

ID3 algorithm
• build decision tree based on training objects with• build decision tree based on training objects with 

known class labels to classify testing objects
• rank attributes with information gain measurerank attributes with information gain measure
• minimal height 

o the least number of tests to classify an objecty j
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Top-Down Induction of Decision Treep

Attributes = {Outlook, Temperature, Humidity, Wind}

PlayTennis = {yes, no}

Outlook

sunny rainovercast

Humidity Windyes
high normal strong weak

no yes

g normal

no

strong we

yes
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Entropy and Information Gainpy

S contains si tuples of class Ci for i = {1, …, m} 
Information measures info required to classify any 
arbitrary tuple

s
s

s
ssssI i

m
i

m 221 log),,,( ∑−=K

Entropy of attribute A with values {a1, a2, …, av}

ssi 1=

),...,(
...

)( 1
1

1
mjj

v

j

mjj ssI
s

ss
AE ∑

=

++
=

Information gained by branching on attribute A

)()()Gain( AEsssIA −= )(),,,()Gain( 21 AEsssIA m= K
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Example: Analytical Characterizationp y

T kTask
• Mine general characteristics describing graduate 

students using analytical characterizationstudents using analytical characterization

GivenGiven
• attributes name, gender, major, birth_place, 

birth_date, phone#, gpa
• generalization(ai) = concept hierarchies on ai
• Ui = attribute analytical thresholds for ai
• R = attribute relevance threshold
• Ti = attribute generalization thresholds for ai
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Example: Analytical Characterization (2)p y ( )

S 1 D ll iStep 1: Data collection
• target class: graduate student

contrasting class: undergraduate student• contrasting class: undergraduate student

Step 2: Analytical generalization using thresholds Ui
• attribute removal

o remove name and phone#
attribute generalization• attribute generalization

o generalize major, birth_place, birth_date, gpa
o accumulate counts

• candidate relation
o gender, major, birth_country, age_range, gpa
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Example: Analytical characterization (3)p y ( )
gender major birth_country age_range gpa count

M Science Canada 20-25 Very good 16y_g
F Science Foreign 25-30 Excellent 22
M Engineering Foreign 25-30 Excellent 18
F Science Foreign 25-30 Excellent 25g
M Science Canada 20-25 Excellent 21
F Engineering Canada 20-25 Excellent 18

Candidate relation for Target class: Graduate students (Σ=120)

gender major birth_country age_range gpa count

M Science Foreign <20 Very good 18M Science Foreign <20 Very_good 18
F Business Canada <20 Fair 20
M Business Canada <20 Fair 22
F Science Canada 20-25 Fair 24F Science Canada 20-25 Fair 24
M Engineering Foreign 20-25 Very_good 22
F Engineering Canada <20 Excellent 24

Candidate relation for Contrasting class: Undergraduate students (Σ=130)
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Example: Analytical Characterization (4)p y ( )

Step 3: Relevance analysis
• Calculate expected info required to classify an 

bit t larbitrary tuple

9988.0130log130120log120)130,120()s,(s 2221 =−−== II

C l l f h b

9988.0
250

log
250250

log
250

)130,120()s,(s 2221 II

• Calculate entropy of each attribute: e.g. major
For major=”Science”: s11=84 s21=42 I(s11, s21)=0.9183
For major=”Engineering”: s12=36 s22=46 I(s12 s22)=0 9892For major Engineering : s12 36 s22 46 I(s12, s22) 0.9892
For major=”Business”: s13=0 s23=42 I(s13, s23)=0

Number of grad Number of undergradNumber of grad 
students in “Science”

Number of undergrad 
students in “Science”
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Example: Analytical Characterization (5)p y ( )

Calculate expected info required to classify a given 
sample if S is partitioned according to the attribute

7873.0),(
250
42),(

250
82),(

250
126E(major) 231322122111 =++= ssIssIssI

Calculate information gain for each attribute
2115.0E(major))s,I(s)Gain(major 21 =−=

• Information gain for all attributes
Gain(gender) = 0.0003(g )
Gain(birth_country) = 0.0407
Gain(major) = 0.2115
Gain(gpa) = 0.4490(gp )
Gain(age_range) = 0.5971
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Example: Analytical Characterization (6)p y ( )

S 4 D i i i i l ki l i WStep 4a: Derive initial working relation W0

• Use attribute relevance threshold R, e.g., R = 0.1
• remove irrelevant/weakly relevant attributes (gain < R) from• remove irrelevant/weakly relevant attributes (gain < R) from 

candidate relation, i.e., drop gender, birth_country
• remove contrasting class candidate relation

major age_range gpa count
Science 20-25 Very_good 16
Science 25 30 Excellent 47Science 25-30 Excellent 47
Science 20-25 Excellent 21
Engineering 20-25 Excellent 18
Engineering 25 30 Excellent 18

Initial target class working relation W0: Graduate students

Engineering 25-30 Excellent 18

Step 4b: Perform attribute-oriented induction using thresholds Ti
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Chapter 6: Concept Description and GeneralizationChapter 6: Concept Description and Generalization

What is concept description? 

Descriptive statistical measures in large databasesp g

Data generalization and summarization-based 
characterizationcharacterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between 
different classes

Summary
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Mining Class ComparisonsMining Class Comparisons

Comparison
• Comparing two or more classes.

Relevance Analysis
• Find attributes (features) which best distinguish different classes.

Method
• Partition the set of relevant data into the target class and the 

t ti l ( )contrasting class(es)

• Analyze the attribute’s relevances

Generalize both classes to the same high level concepts• Generalize both classes to the same high level concepts

• Compare tuples with the same high level descriptions

• Present the results and highlight the tuples with strong• Present the results and highlight the tuples with strong 
discriminant features
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Example: Analytical comparison (2)Example: Analytical comparison (2)

Task
• Compare graduate and undergraduate students using discriminant 

lrule.

Given

• attributes name, gender, major, birth_place, birth_date, residence, 
phone#, gpa

• generalization(ai) = concept hierarchies on attributes ai

• Ui = attribute analytical thresholds for attributes ai

• R = attribute relevance threshold

• Ti = attribute generalization thresholds for attributes ai
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Example: Analytical comparison (3)Example: Analytical comparison (3)

Step1: Data collection
• target and contrasting classes

Step 2: Attribute relevance analysis
• remove attributes name, gender, major, phone#

Step 3: Synchronous generalization
• controlled by user-specified dimension thresholds
• prime target and contrasting class(es) relations/cuboids



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 6061

Example: Analytical comparison (4)Example: Analytical comparison (4)

birth country age range Gpa count%_ y g _ g p
Canada 20-25 Good 5.53%
Canada 25-30 Good 2.32%
Canada over 30 Very good 5.86%

Prime generalized relation for the target class: Graduate students

_ y_g
… … … …
Other over_30 Excellent 4.68%

Prime generalized relation for the target class: Graduate students

birth_country age_range Gpa count%
Canada 15 20 Fair 5 53%Canada 15-20 Fair 5.53%
Canada 15-20 Good 4.53%
… … … …
C d 25 30 G d 5 02%Canada 25-30 Good 5.02%
… … … …
Other over_30 Excellent 0.68%

Prime generalized relation for the contrasting class: Undergraduate students
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Example: Analytical comparison (5)Example: Analytical comparison (5)

Step 4: Compare tuples; drill down, roll up and other OLAP 
operations on target and contrasting classes to adjust 
levels of abstractions of resulting descriptionlevels of abstractions of resulting description.

Step 5: PresentationStep 5: Presentation
• as generalized relations, crosstabs, bar charts, pie 

charts or rulescharts, or rules
• contrasting measures to reflect comparison between 

target and contrasting classestarget and contrasting classes
o e.g. count%
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Quantitative Discriminant RulesQuantitative Discriminant Rules

Cj = target class
qa = a generalized tuple covers some tuples of class

but can also cover some tuples of any contrasting class C• but can also cover some tuples of any contrasting class Ci

Discrimination weight (d_weight)
• m classes Ci ( )Ct target classm classes Ci
• definition:

[0 1]

( ) ( )
( )∑ ∈

∈
= m

ia

ja
ja

Cq

Cq
Cq_weightd

count

count
,

target class

contrasting
classes

• range: [0, 1]
• high d_weight: qa primarily represents a target class concept
• low d_weight: qa is primarily derived from contrasting classes

=i 1
classes

_ g qa p y g

Form of a Quantitative Discriminant Rule:

( ) ( ) [ ]d i htditit t l dXXX∀ ( ) ( ) [ ]d_weightconditionsstarget_cla :, dXXX ⇐∀
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Example: Quantitative Discriminant RuleExample: Quantitative Discriminant Rule

Status Birth_country Age_range Gpa Count
Graduate Canada 25-30 Good 90
Undergraduate Canada 25-30 Good 210

Quantitative discriminant rule

Count distribution between graduate and undergraduate students for a generalized tuple

Undergraduate Canada 25 30 Good 210

Quantitative discriminant rule
∀X, graduate_student(X) ⇐ birth_country(X) = ‘Canada’ ∧

(X) ’25 30’age_range(X) = ’25-30’ ∧
gpa(X) = ‘good’  [d: 30%]

d weight = 90/(90+210) = 30%• d_weight = 90/(90+210) = 30%
• Rule is sufficient (but not necessary):

o if X fulfills the condition, the probability that X is a graduate student p y g
is 30%, but not vice versa, i.e., there are other grad studs, too.
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Discriminant weight vs Typicality weightDiscriminant weight vs. Typicality weight

)()( xmalexgrad ⇒∧
Quantitative characteristic rules

• necessary condition of target class
• t weight: fraction of tuples representing the target class in initial relation

.%]47:["")(_
%]53:["")(_

tforeignxregionbirth
tCanadaxregionbirth

=
∨=

( )• t_weight: fraction of tuples representing the target class in initial relation 
covered by a single generalized tuple qa

Example: percentage of all male grad students born in Canada is 53%

( ) ( )
( )∑

=

= n

i
i

a
a

q

qq_weightt

1

count

count

• Example: percentage of all male grad students born in Canada is 53%, 
percentage of male grad students born in foreign countries is 47%

∀X, graduate student(X) ⇐

Quantitative Discriminant Rules
• Rule is sufficient

∀X, graduate_student(X) ⇐
birth_country(X) = ‘Canada’ ∧
age_range(X) = ’25-30’ ∧
gpa(X) = ‘good’  [d: 30%]

• d_weight: a generalized tuple covers some tuples of target class, but can 
also cover some tuples of contrasting class

• Example: those born in Canada, between 25 and 30 years old,

( ) ( )
( )∑ ∈

∈
= m

ia

ja
ja

Cq

Cq
Cq_weightd

1

count

count
,

• Example: those born in Canada, between 25 and 30 years old, 
and “good” gpa have a 30% probability of being a grad student

=i 1
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Class DescriptionClass Description 

Quantitative characteristic rule (necessary)
( ) ( ) [ ] ( ) [ ]mm t:wXconditiont:wXconditionXsstarget_claX, ∨∨⇒∀ K11

Quantitative discriminant rule (sufficient)
( ) ( ) [ ] ( ) [ ]mm wd:Xconditionwd:XconditionXsstarget_claX, ′∨∨′⇐∀ K11

Quantitative description rule (necessary and sufficient)
( )Xsstarget_claX, ⇔∀ ( )

( ) [ ] ( ) [ ]mmm wd:t:wXconditionwd:t:wXcondition ′∨∨′ ,, 111 K

Di j ti N l F E h diti i th di j ti ( )Disjunctive Normal Form: Each condition in the disjunction (∨) 
may be a conjunction (∧) with no more disjunctions inside
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Example: Quantitative Description RuleExample: Quantitative Description Rule

Location/item TV Computer Both itemsLocation/item  TV Computer Both_items

 Count t-wt d-wt Count t-wt d-wt Count t-wt d-wt 

Europe 80 25% 40% 240 75% 30% 320 100% 32%p

N_Am 120 17.65% 60% 560 82.35% 70% 680 100% 68% 

Both_ 
regions

200 20% 100% 800 80% 100% 1000 100% 100% 

d l f l

regions 
 

 

Crosstab showing associated t-weight, d-weight values and total number 
(count, in thousands) of TVs and computers sold at AllElectronics in 1998

Quantitative description rule for target class Europe

Europe(X)X ⇔∀
30%]:d75%,:[t)computer""(item(X)40%]:d25%,:[t)TV""(item(X)

Europe(X)X,
=∨=

⇔∀
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Chapter 6: Concept Description and GeneralizationChapter 6: Concept Description and Generalization

What is concept description? 

Descriptive statistical measures in large databasesp g

Data generalization and summarization-based 
characterizationcharacterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between 
different classes

Summary
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SummarySummary

Concept description: characterization and discrimination

OLAP-based vs. attribute-oriented induction (AOI)

Efficient implementation of AOIEfficient implementation of AOI

Analytical characterization and comparison

Descriptive statistical measures in large databases

• d_weight, t_weight
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Chapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of 
complex data objectscomplex data objects

Mining text databases

Mining the World-Wide Web

SummarySummary
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Mining Complex Data Objects:Mining Complex Data Objects: 
Generalization of Structured Data

Set-valued attribute
• Generalization of each value in the set into its 

corresponding higher level conceptscorresponding higher-level concepts
• Derivation of the general behavior of the set, such 

as the number of elements in the set, the types or 
l i th t th i ht dvalue ranges in the set, or the weighted average 

for numerical data
• E.g., hobby = {tennis, hockey, chess, violin,E.g., hobby  {tennis, hockey, chess, violin, 

nintendo_games} generalizes to {sports, music, 
video_games}

List-valued or a sequence-valued attributeList-valued or a sequence-valued attribute
• Same as set-valued attributes except that the order 

of the elements in the sequence should be 
b d i th li tiobserved in the generalization
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Generalizing Spatial and Multimedia DataGeneralizing Spatial and Multimedia Data

Spatial data:Spatial data:
• Generalize detailed geographic points into clustered regions, 

such as business, residential, industrial, or agricultural areas, 
according to land usageaccording to land usage

• Require the merge of a set of geographic areas by spatial 
operations

Image data:Image data:
• Extracted by aggregation and/or approximation
• Size, color, shape, texture, orientation, and relative positions , , p , , , p

and structures of the contained objects or regions in the image 
Music data: 

Summarize its melody: based on the approximate patterns that• Summarize its melody: based on the approximate patterns that 
repeatedly occur in the segment

• Summarized its style: based on its tone, tempo, or the major 
musical instruments playedmusical instruments played
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Chapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of 
complex data objectscomplex data objects

Mining text databases

Mining the World-Wide Web

SummarySummary
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Text Databases and IRText Databases and IR

Text databases (document databases)Text databases (document databases) 
• Large collections of documents from various sources: 

news articles, research papers, books, digital libraries, , p p , , g ,
e-mail messages, and Web pages, library database, etc.

• Data stored is usually semi-structured (Bsp. XML)
Traditional information retrieval techniques become• Traditional information retrieval techniques become 
inadequate for the increasingly vast amounts of text 
data

f lInformation retrieval
• A field developed in parallel with database systems

Information is organized into (a large number of)• Information is organized into (a large number of)  
documents

• Information retrieval problem: locating relevant 
d t b d i t h k ddocuments based on user input, such as keywords or 
example documents
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I f ti R t i lInformation Retrieval

T i l IR tTypical IR systems

• Online library catalogs

• Online document management systems

Information retrieval vs database systemsInformation retrieval vs. database systems

• Some DB problems are not present in IR, e.g., update, 

transaction management,  complex objects

• Some IR problems are not addressed well in DBMS,Some IR problems are not addressed well in DBMS, 

e.g., unstructured documents, approximate search 

using keywords and relevanceusing keywords and relevance
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Basic Measures for Text RetrievalBasic Measures for Text Retrieval

Precision: the percentage of retrieved documents that are 
in fact relevant to the query (i.e., “correct” responses)

|}{}{| RetrievedRelevantprecision ∩

Recall: the percentage of documents that are relevant to

|}{|
|}{}{|

Retrieved
precision =

Recall: the percentage of documents that are relevant to 
the query and were, in fact, retrieved

|}{}{| RetrievedRelevantrecall ∩
=

|}{| Relevant
recall =
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Keyword-Based RetrievalKeyword Based Retrieval

A d t i t d b t i hi h bA document is represented by a string, which can be 
identified by a set of keywords
Queries may use expressions of keywordsQueries may use expressions of keywords

• E.g., car and repair shop, tea or coffee, DBMS but 
not Oracle

• Queries and retrieval should consider synonyms,
e.g., repair and maintenance
j diffi l i f h d lMajor difficulties of the model

• Synonymy: A keyword T does not appear anywhere 
in the document even though the document isin the document, even though the document is 
closely related to T, e.g., data mining

• Polysemy: The same keyword may mean different y y y y
things in different contexts, e.g., mining
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Similarity-Based Retrieval in Text Databases

Finds similar documents based on a set of common keywords

Answer should be based on the degree of relevance based on the 
nearness of the keywords, relative frequency of the keywords, etc.

Basic techniques

St li t• Stop list
o Set of words that are deemed “irrelevant”, even though they may 

appear frequentlypp q y

o E.g., a, the, of, for, with, etc.

o Stop lists may vary when document set varies

• Word stem
o Several words are small syntactic variants of each other since they 

share a common word stemshare a common word stem

o E.g., drug, drugs, drugged
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Similarity Based Retrieval in Text Databases (2)Similarity-Based Retrieval in Text Databases (2)

• A term frequency table
o Each entry frequent_table(i, j) =  # of occurrences of the 

word t in document dword ti in document dj

o Usually, the ratio instead of the absolute number of 
occurrences is used

• Similarity metrics: measure the closeness of a document to a 
query (a set of keywords)

Relative term occurrenceso Relative term occurrences
o Cosine distance:
〈v1, v2〉 = |v1| ⋅ |v2| ⋅ cos(v1, v2)〈 1, 2〉 | 1| | 2| ( 1, 2)

||||
,

),( 21
21

vv
vvsimilarity =

|||| 21 vv
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Latent Semantic Indexing

Basic ideaBasic idea
• Similar documents have similar word frequencies
• Difficulty: the size of the term frequency matrix is very largey q y y g
• Use a singular value decomposition (SVD = PCA = KLT) technique 

to reduce the size of frequency table (reduction of dimensionality)
R t i th K t i ifi t f th f t bl• Retain the K most significant rows of the frequency table

Method
• Create a term frequency matrix freq matrix• Create a term frequency matrix, freq_matrix
• SVD construction: Compute the singular valued decomposition of 

freq_matrix F by splitting it into 3 matrices, F = U ⋅S ⋅V, V ⋅Vt = Id
• Vector identification: For each document d, replace its original 

document vector by a new excluding the eliminated terms
• Index creation: Store the set of all vectors, indexed by one of a• Index creation: Store the set of all vectors, indexed by one of a 

number of techniques (such as TV-tree)
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Other Text Retrieval Indexing Techniques
Inverted index

• Maintains two hash- or B+-tree indexed tables:
o a posting represents the occurrence of a term T in a document d

i.e. a posting is a link object in the m:n-relationship term-documents
o document_table: a set of document records <doc_id, postings_list> 
o term_table: a set of term records, <term, postings_list>
o In SQL: index on (doc_id, term) and index on (term, doc_id)Q ( _ , ) ( , _ )

• Answer query: Find all docs associated with one or a set of terms
• Advantage: easy to implement

Disadvantage: do not handle well synonymy and polysemy and• Disadvantage: do not handle well synonymy and polysemy, and 
posting lists could be too long (storage could be very large)

Signature file
• Associate a signature with each document
• A signature is a representation of an ordered list of terms that 

describe the document
• Order is obtained by frequency analysis, stemming and stop lists
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fTypes of Text Data Mining

Ke o d based asso iation anal sisKeyword-based association analysis
Automatic document classification
Similarity detectionSimilarity detection

• Cluster documents by a common author
• Cluster documents containing information from a common source 

Link analysis: unusual correlation between entities
Sequence analysis: predicting a recurring event
Anomaly detection: find information that violates usual patternsAnomaly detection: find information that violates usual patterns 
Hypertext analysis

• Patterns in anchors/linksPatterns in anchors/links
o Anchor text correlations with linked objects
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Keyword-based association analysis

Collect sets of keywords or terms that occur frequentlyCollect sets of keywords or terms that occur frequently 
together and then find the association or correlation
relationships among them
Fi t th t t d t b i t iFirst preprocess the text data by parsing, stemming, 
removing stop words, etc.
Then evoke association mining algorithmsThen evoke association mining algorithms

• Consider each document as a transaction
• View a set of keywords in the document as a set of 

it i th t tiitems in the transaction
Term level association mining

• No need for human effort in tagging documents• No need for human effort in tagging documents
• The number of meaningless results and the execution 

time is greatly reduced
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fAutomatic document classification

Moti ationMotivation
• Automatic classification for the tremendous number of on-line text 

documents (Web pages, emails, etc.) ( p g , , )
A classification problem 

• Training set: Human experts generate a training data set
• Classification: The computer system discovers the classification 

rules
• Application: The discovered rules can be applied to classifyApplication: The discovered rules can be applied to classify 

new/unknown documents
Text document classification differs from the classification of relational 
datadata

• Document databases are not structured according to attribute-
value pairs
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fAssociation-Based Document Classification

Extract keywords and terms by information retrieval and simple 
association analysis techniques
Obtain concept hierarchies of keywords and terms using p y g

• Available term classes, such as WordNet
• Expert knowledge
• Some keyword classification systems• Some keyword classification systems

Classify documents in the training set into class hierarchies
Apply term association mining method to discover sets of 
associated termsassociated terms
Use the terms to maximally distinguish one class of documents 
from others
Derive a set of association rules associated with each documentDerive a set of association rules associated with each document 
class
Order the classification rules based on their occurrence frequency 
and discriminative powerp
Used the rules to classify new documents
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Document Clustering

Automatically group related documents based on their 
contents
Require no training sets or predetermined taxonomiesRequire no training sets or predetermined taxonomies, 
generate a taxonomy at runtime
Major steps

• Preprocessing
o Remove stop words, stem, feature extraction, lexical 

analysis, …
• Hierarchical clustering

o Compute similarities applying clustering algorithms, …
Slicing• Slicing

o Fan out controls, flatten the tree to configurable number of 
levels, …
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Ch t 7 Mi i C l T f D tChapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of 
complex data objectscomplex data objects

Mining text databases

Mining the World-Wide Web

SummarySummary
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Mining the World-Wide Web

Th WWW i h id l di t ib t d l b l i f tiThe WWW is huge, widely distributed, global information 
service center for 

• Information services: news advertisements consumer• Information services: news, advertisements, consumer 
information, financial management, education, 
government, e-commerce, etc. (content)

• Hyper-link information (structure)
• Access and usage information (usage)

id i h f d i iWWW provides rich sources for data mining
Challenges

Too h ge fo effecti e data a eho sing and data• Too huge for effective data warehousing and data 
mining

• Too complex and heterogeneous: no standards and• Too complex and heterogeneous: no standards and 
structure



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 7021

Mining the World-Wide WebMining the World Wide Web

Growing and changing very rapidlyGrowing and changing very rapidly
Internet growth
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Broad diversity of user communities
Only a small portion of the information on the Web is truly relevant or y p y
useful

• 99% of the Web information is useless to 99% of Web users
How can we find high quality Web pages on a specified topic?• How can we find high-quality Web pages on a specified topic?
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Web search enginesWeb search engines

Index-based: search the Web, index Web pages, and 
build and store huge keyword-based indices 
Help locate sets of Web pages containing certain 
keywords
Deficiencies

• A topic of any breadth may easily contain hundreds of 
h d f dthousands of documents

• Many documents that are highly relevant to a topic 
ma not contain ke o ds defining them (pol sem )may not contain keywords defining them (polysemy)
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Web Mining: A more challenging taskWeb Mining: A more challenging task 

Searches forSearches for 
• Web access patterns

W b t t• Web structures
• Regularity and dynamics of Web contents

Problems
• The “abundance” (Überfluss) problem
• Limited coverage of the Web: hidden Web sources,  

majority of data in DBMS
• Limited query interface based on keyword-oriented 

search
• Limited customization to individual users
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Web Mining TaxonomyWeb Mining Taxonomy

Web Mining

Web Usage
Mining

Web Structure 
Mining

Web Content
Mining MiningMiningMining

General Access 
Pattern Tracking

Customized 
Usage Tracking

Search Result 
Mining

Web Page 
Content Mining
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Mining the Wo ld Wide WebMining the World-Wide Web

Web Mining

Web Usage
Mining

Web Structure 
Mining

Web Content
Mining

Search Result 
Mining

Web Page Content Mining

G l A

Customized 
Usage Tracking

MiningWeb Page Summarization 
WebLog (Lakshmanan et.al. 1996), WebOQL 
(Mendelzon et.al. 1998) …: Web Structuring 
query languages; can identify information General Access 

Pattern Tracking

query languages; can identify information 
within given web pages 
Ahoy! (Etzioni et.al. 1997): Uses heuristics to 
distinguish personal home pages from other 
web pages
ShopBot (Etzioni et.al. 1997): Looks for product 
prices within web pages
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Mining the Wo ld Wide WebMining the World-Wide Web

Web Mining

Web Usage
Mining

Web Structure 
Mining

Web Content
Mining MiningMiningMining

Search Result Mining
Web Page

Customized 
Usage Tracking

Search Engine Result 
Summarization
Clustering Search Result 

Web Page
Content Mining

General Access 
Pattern Tracking

(Leouski & Croft 1996; Zamir & 
Etzioni 1997): 
Categorizes documents using 
phrases in titles and snippetsp pp

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms – 7027

Mining the Wo ld Wide WebMining the World-Wide Web

Web Mining

Web Usage
MiningWeb Structure Mining

Web Content
Mining

Customized 
Usage Tracking

Using Links
PageRank (Brin et al. 1998)
CLEVER (Chakrabarti et al. 1998)
Use interconnections between web

Web Page
Content Mining

General Access 

Usage TrackingUse interconnections between web 
pages to give weights to pages.

Using Generalization
Search Result

Mining

g

Pattern TrackingMLDB (1994), VWV (1998)
Uses a multi-level database 
representation of the Web. 
Counters (popularity) and link listsCounters (popularity) and link lists 
are used for capturing structure.
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Mining the Wo ld Wide WebMining the World-Wide Web

Web Mining

Web Usage
Mining

Web Structure
Mining

Web Content
Mining MiningMiningMining

Web Page
General Access Pattern Tracking

Web Log Mining (Zaïane, Xin, Han 1998):
Uses KDD techniques to understand

Customized 
Usage Tracking

Search Result

Web Page
Content Mining

Uses KDD techniques to understand 
general access patterns and trends. 
Can shed light on better structure and 
grouping of resource providers.

Mining
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Mining the Wo ld Wide WebMining the World-Wide Web

Web Mining

Web Usage
Mining

Web Structure
Mining

Web Content
Mining Mining

General Access Customized Usage Tracking

MiningMining

Web Page General Access
Pattern Tracking

Customized Usage Tracking

Adaptive Sites (Perkowitz & Etzioni 1997):
Analyzes access patterns of each user at Search Result

Web Page
Content Mining

a time; Web site restructures itself auto-
matically by learning from user access 
patterns.

Mining
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Mining the Web's Link Structures

Finding authoritative Web pages
• Retrieving pages that are not only relevant, but also of 

high quality, or authoritative on the topic
Hyperlinks can infer the notion of authority

• The Web consists not only of pages, but also of 
hyperlinks pointing from one page to another
Th h li k i f• These hyperlinks contain an enormous amount of 
latent human annotation
A h pe link pointing to anothe Web page can be• A hyperlink pointing to another Web page can be 
considered as the author's endorsement (Bestätigung) of 
the other pagethe other page
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Mining the Web's Link StructuresMining the Web s Link Structures

Problems with the Web linkage structureProblems with the Web linkage structure
• Not every hyperlink represents an endorsement

o Other purposes are for navigation or for paido Other purposes are for navigation or for paid 
advertisements

o If the majority of hyperlinks are for endorsement, 
the collective opinion will still dominate

• One authority will seldom have its Web page point to 
its rival authorities in the same fieldits rival authorities in the same field

• Authoritative pages are seldom particularly 
descriptivep

Hub 
• Set of Web pages that provides collections of links to 

authorities
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HITS (Hyperlink-Induced Topic Search)

Explore interactions between hubs and authoritative pages
Use an index-based search engine to form the root set

• Many of these pages are presumably relevant to the search topic• Many of these pages are presumably relevant to the search topic
• Some of them should contain links to most of the prominent 

authorities
Expand the root set into a base setExpand the root set into a base set

• Include all of the pages that the root-set pages link to, and all of 
the pages that link to a page in the root set, up to a designated 
i t ffsize cutoff

Apply weight-propagation  
• An iterative process that determines numerical estimates of hub p

and authority weights
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Systems Based on HITSSystems Based on HITS

O t t h t li t f th ith l h b• Output a short list of the pages with large hub 
weights, and the pages with large authority weights for 
the given search topict e g e sea c top c

Systems based on the HITS algorithm
• Clever, Google: achieve better quality search results , g q y

than those generated by term-index engines such as 
AltaVista and those created by human ontologists such 
as Yahoo!as Yahoo!

Difficulties from ignoring textual contexts
• Drifting: when hubs contain multiple topicsDrifting: when hubs contain multiple topics
• Topic hijacking: when many pages from a single Web 

site point to the same single popular site
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f fAutomatic Classification of Web Documents

Assign a class label to each document from a set of 
predefined topic categories
Based on a set of examples of preclassified documents
Example

• Use Yahoo!'s taxonomy and its associated 
documents as training and test sets 
Derive a Web document classification scheme• Derive a Web document classification scheme

• Use the scheme classify new Web documents by 
assigning categories from the same taxonomyg g g y

Keyword-based document classification methods
Statistical models
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Multilayered Web Information BaseMultilayered Web Information Base

L th W b it lfLayer0: the Web itself
Layer1: the Web page descriptor layer

Contains descriptive information for pages on the Web• Contains descriptive information for pages on the Web
• An abstraction of Layer0: substantially smaller but still 

rich enough to preserve most of the interesting,rich enough to preserve most of the interesting, 
general information

• Organized into dozens of semistructured classes
o document, person, organization, ads, directory, 

sales, software, game, stocks, library_catalog, 
geographic data scientific data etcgeographic_data, scientific_data, etc.

Layer2 and up: various Web directory services constructed 
on top of Layer1p y 1

• provide multidimensional, application-specific services
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Multiple Layered Web ArchitectureMultiple Layered Web Architecture

More Generalized DescriptionsLayern pye n

...

G li d D i tiLayer Generalized DescriptionsLayer1

Layer0
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Mining the World-Wide Web

Layer-0: Primitive data
Layer-1: dozen database relations representing types of objects (metadata)

document, organization, person, software, game, map, image,…

• document(file_addr, authors, title, publication, publication_date, abstract, language, 
table_of_contents, category_description, keywords, index, multimedia_attached, num_pages, 
format, first_paragraphs, size_doc, timestamp, access_frequency, links_out,...)

• person(last_name, first_name, home_page_addr, position, picture_attached, phone, e-mail, 
office_address, education, research_interests, publications, size_of_home_page, timestamp, 
access frequency, ...)_ q y, )

• image(image_addr, author, title, publication_date, category_description, keywords, size, 
width, height, duration, format, parent_pages, colour_histogram, Colour_layout, 
T t l t M t t l li ti t ti t f )Texture_layout, Movement_vector, localisation_vector, timestamp, access_frequency, ...)
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Mining the World-Wide WebMining the World Wide Web

Layer-2: simplification of layer-1

•doc_brief(file_addr, authors, title, publication, publication_date, abstract, language, 
category_description, key_words, major_index, num_pages, format, size_doc, access_frequency, 
links out)

Layer 2: simplification of layer 1

links_out)

•person_brief (last_name, first_name, publications,affiliation, e-mail, research_interests, 
size_home_page, access_frequency)

Layer-3: generalization of layer-2

•cs_doc(file_addr, authors, title, publication, publication_date, abstract, language, 
category_description, keywords, num_pages, form, size_doc, links_out)

•doc summary(affiliation field p blication ear co nt first a thor list file addr list)•doc_summary(affiliation, field, publication_year, count, first_author_list, file_addr_list)

•doc_author_brief(file_addr, authors, affiliation, title, publication, pub_date, 
category description, keywords, num pages, format, size doc, links out)g y_ p y _p g _ _ )

•person_summary(affiliation, research_interest, year, num_publications, count)
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XML and Web Mining

XML can help to extract the correct descriptors 
• Standardization would greatly facilitate information extraction

<NAME> eXtensible Markup Language</NAME>
<RECOM>World-Wide Web Consortium</RECOM>
<SINCE>1998</SINCE><SINCE>1998</SINCE>
<VERSION>1.0</VERSION>
<DESC>Meta language that facilitates more meaningful and        

precise declarations of document content</DESC>precise declarations of document content</DESC>
<HOW>Definition of new tags and DTDs</HOW>

• Potential problemPotential problem
o XML can help solve heterogeneity for vertical applications, but the 

freedom to define tags can make horizontal applications on the 
Web more heterogeneous
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Benefits of Multi-Layer Meta-WebBenefits of Multi Layer Meta Web

Benefits:
• Multi-dimensional Web info summary analysis
• Approximate and intelligent query answering
• Web high-level query answering (WebSQL, WebML)
• Web content and structure mining
• Observing the dynamics/evolution of the Web

Is it realistic to construct such a meta-Web?
• Benefits even if it is partially constructedp y
• Benefits may justify the cost of tool development, 

standardization and partial restructuring
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Web Usage MiningWeb Usage Mining

Mining Web log records to discover user access patterns 
of Web pages
A li tiApplications

• Target potential customers for electronic commerce
E h th lit d d li f I t t• Enhance the quality and delivery of Internet 
information services to the end user
Improve Web server system performance• Improve Web server system performance

• Identify potential prime advertisement locations
Web log p o ide i h info m tion bo t Web d n miWeb logs provide rich information about Web dynamics

• Typical Web log entry includes the URL requested, the 
IP address from which the request originated and aIP address from which the request originated, and a 
timestamp
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Techniques for Web usage miningTechniques for Web usage mining

C t t ltidi i l i th W bl d t bConstruct multidimensional view on the Weblog database
• Perform multidimensional OLAP analysis to find the top 

N users top N accessed Web pages most frequentlyN users, top N accessed Web pages, most frequently 
accessed time periods, etc.

Perform data mining on Weblog records g g
• Find association patterns, sequential patterns, and 

trends of Web accessing
d dd l f b• May need additional information,e.g., user browsing 

sequences of the Web pages in the Web server buffer
Conduct studies toConduct studies to

• Analyze system performance, improve system design by 
Web caching, Web page prefetching, and Web page g, p g p g, p g
swapping
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Mining the World-Wide Web

Design of a Web Log Miner
• Web log is filtered to generate a relational databaseg g
• A data cube is generated form database
• OLAP is used to drill-down and roll-up in the cubep
• OLAM is used for mining interesting knowledge

Web log Database Data Cube Sliced and diced
cube

Knowledge

1
Data Cleaning

2
Data Cube

3 4
D Mi i

g Data Cube
Creation

OLAP Data Mining
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Ch t 7 Mi i C l T f D tChapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of 
complex data objectscomplex data objects

Mining text databases

Mining the World-Wide Web

SummarySummary
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Summary

Mining complex types of data include object data, spatial 
data, multimedia data, time-series data, text data, and
Web data

Text mining goes beyond keyword-based and similarity-
based information retrieval and discovers knowledge 
from semi-structured data using methods like keyword-
b d d d l fbased association and document classification

Web mining includes mining Web link structures to 
identify authoritative Web pages, the automatic 
classification of Web documents, building a multilayered 
W b i f ti b d W bl i iWeb information base, and Weblog mining
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