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What is a Data Warehouse?

Defined in many different ways, but not rigorously.

. A decision support database that is maintained separately from
the organization’s operational database(s)

Operational
DBs Extract
Transform Data
Load
Refresh Warehouse
daily business business analysis for
operations strategic planning

Data warehousing:
. The process of constructing and using data warehouses
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Chapter 2: Data Warehousing
and OLAP Technology for Data Mining

What is a data warehouse?
- A multi-dimensional data model

. Data warehouse architecture
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What is a Data Warehouse?

- Support information processing by providing a
solid platform of consolidated, historical data for
analysis.

- “A data warehouse is a subject-oriented,
Integrated, time-variant, and nonvolatile
collection of data in support of management’s
decision-making process."—W. H. Inmon
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Data Warehouse: Subject-Oriented

Organized around major subjects, such as customer,
product, sales.

Focusing on the modeling and analysis of data for
decision makers, not on daily operations or transaction
processing.

Provide a simple and concise view around particular
subject issues by excluding data that are not useful in
the decision support process.

RWTH Aachen, Informatik 9, Prof. Seidl| Data Mining Algorithms — 2007

Data Warehouse: 7ime Variant

The time horizon for the data warehouse is significantly
longer than that of operational systems.

. Operational database: current value data.

. Data warehouse data: provide information from a
historical perspective (e.g., past 5-10 years)

Every key structure in the data warehouse
. Contains an element of time, explicitly or implicitly

. The key of the original operational data may or may
not contain an explicit “time element”.
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Data Warehouse: Integrated

Constructed by integrating multiple, heterogeneous data
sources

. relational databases, flat files, on-line transaction
records

Data cleaning and data integration techniques are
applied.

. Ensure consistency in naming conventions, encoding
structures, attribute measures, etc. among different
data sources

» E.g., Hotel price: currency, tax, breakfast covered, etc.
. When data is moved to the warehouse, it is converted.
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Data Warehouse: Non-Volatile

A physically separate store of data transformed from the
operational environment.

Operational update of data does not occur in the data
warehouse environment.

. Does not require transaction processing, recovery,
and concurrency control mechanisms

. Requires only two operations in data accessing:
o Initial loading of data and access of data.
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Data Warehouse vs. Heterogeneous DBMS

- Traditional heterogeneous DB integration:
Build wrappers/mediators on top of heterogeneous databases
Query driven approach

o Distribute a query to the individual heterogeneous sites; a
meta-dictionary is used to translate the queries accordingly

o Integrate the results into a global answer set

Data warehouse: update-driven

Information from heterogeneous sources is integrated in advance
and stored in warehouses for direct query and analysis
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Chap. 2: Data Warehousing
and OLAP Technology for Data Mining

OLTP vs. OLAP
OLTP OLAP
users clerk, IT professional knowledge worker
function day to day operations decision support
DB design application-oriented subject-oriented
data current, up-to-date historical,
detailed, flat relational summarized, multidimensional
isolated integrated, consolidated
usage repetitive ad-hoc
access read/write lots of scans

index/hash on prim. key

unit of work

short, simple transaction

complex query

# records tens millions

accessed

# users thousands hundreds

DB size 100MB-GB 100GB-TB

metric transaction throughput query throughput, response
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Data Warehouse vs. Operational DBMS

OLTP (on-line transaction processing)
Major task of traditional relational DBMS

Day-to-day operations: purchasing, inventory, banking,
manufacturing, payroll, registration, accounting, etc.

OLAP (on-line analytical processing)
Major task of data warehouse system
Data analysis and decision making
Distinct features (OLTP vs. OLAP):
User and system orientation: customer vs. market
Data contents: current & detailed vs. historical & consolidated
Database design.: ER + application vs. star schema + subject
View: current & local vs. evolutionary & integrated
Access patterns: update vs. read-only but complex queries
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- What is a data warehouse?

. A multi-dimensional data model

Data warehouse architecture
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From Tables and
Spreadsheets to Data Cubes

A data warehouse is based on a multidimensional data model
which views data in the form of a data cube

A data cube, such as sales, allows data to be modeled and
viewed in multiple dimensions
Dimension tables, such as item (item_name, brand, type), or
time(day, week, month, quarter, year)
. A Fact table that contains
o measures (dependent attributes, e.g., dollars_sold) and

o keys to each of the related dimension tables (dimensions,
independent attributes)
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Multidimensional Data

- Sales volume as a function of product, month,
and region

Dimensions: Product, Location, Time
Hierarchical summarization paths

>
&
L Industry Region Year

Category Country Quarter

Product City Month Week

Product

Office Day

Month
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Dimensions form Concept Hierarchies

all Example: location all
region Europe North~ America
A A
country Germany ... /Spgl Canada . W
A A
city Frankfurt ... Vancouver ... Toronto
N
office . ... M. Wind
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Cube as a Lattice of Cuboids

In data warehousing literature, an 7D base cube is called a base cuboid.
The top most 0-D cuboid, which holds the highest-level of summarization,
is called the apex cuboid. The lattice of cuboids forms a data cube.

0-D(apex) cuboid
1-D cuboids

date country
2-D cuboids

© 3-D(base) cuboid
product, date, country
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A Sample Data Cube Browsing a Data Cube
Date Total annual sales
& 1Qtr  2Qr  3Qtr 40t sumt of TV in US.A. \
D v
o 7 Z 7 Z USA
Q’& PC 7 7 7 7 S.
V& 7 7 7 7 o
sum - < S
/ anada E = eict
Video = % Gn
Cassette - . 8 2 hary
Recorder / €X1C0
sum .
. - Visualization
& agag
- & @ %, = OLAP capabilities
- Interactive manipulation
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Conceptual Modeling of Data Warehouses Example of Star Schema
brapch
item customer time :
Modeling data warehouses: dimensions & measures aefion time_key item
] . . day item_key
Star schema: A fact table in the middle oo day of the week |y, Sales Fact Table ey
connected to a set of dimension tables month _ - ¥ brand
. ! quarter . time_key o type
) i_groyp - ,
Snowflake schema: A refinement of i_typ branch . e item_key 1* supplier_type
star schema where some dimensional SuPPliereitem ] branch_key .
hierarchy is normalized into a set of branch o R keyl location
smaller dimension tables, forming a | type  logation time branch_key |g**° —— "**e.,,, | location_key
_type i ™ street
shape similar to snowflake grea  week branch_name units,_sold cit
i branch t y
region ranch_type dollars_sold province_or_state
Fact constellations: Multiple fact tables share dimension tables, i.e., country

a collection of stars, called galaxy schema or fact constellation
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Example of Snowflake Schema
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Example of Fact Constellation

time_key 1tem
day item_key supplier
day_c})lf_the_week ees, Sales Fact Table ]i:emaname e,
mont taa, . . ] ran st e
quarter . time key o type . L
year item_key - supplier_key?|
. branch key
o f location
REnch o location_key , -
branch key |&*° = »,, | location_key
branch_name units_sold St.reetk
R city_key m
branch_type dollars_sold . = Y
= * | city key
city
province_or_state

time AR AR e R RS .
time_key o ritem‘ Shipping Fact Table
day item_key
day of the week .. Sales Fact Table item:name time_key
month '~.,.. brand o, : ki
quarter time_key “,1 type item_key
* . .
year item key R supplier_type shipper_key ...,
branch_key .| from_location
. = O
"‘ ‘0..
branch o location_key |, location | .+ to_location
* _ . 5
“‘ Q.
branch_key units sold ‘Al ocation_key dollars_cost
branch name — i
branch_type dollars_sold city Lo slhfjyped
province or_state
country shipper | ;

-
Measures

shipper_key
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Measures: Three Categories

. distributive: if the result derived by applying the function
to n aggregate values is the same as that derived by
applying the function on all the data without partitioning.

o E.g., count(), sum(), min(), max().
algebraic: if it can be computed by an algebraic function
with Marguments (where Mis a bounded integer), each
of which is obtained by applying a distributive aggregate
function.

o E.g., avg() = sum() / count(); standard_deviation().

- holistic: if there is no constant bound on the storage size
which is needed to determine / describe a subaggregate.

o E.g., median(), mode(), rank() [see next slide]

shipper_name
location_key

shipper_type
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Measures: Examples

Distributive Measures

count (D, v D) = count (D,) + count (5,)
sum (D, v D,) = sum (D,) + sum (D)

min (D, v D,) min (min (D,), min (5,))
max (D, v D,) max (max (D,), max (D,))

Algebraic Measures
avg (D, v D) =sum (D, v D,) [ count (D, v D,)
= (sum (D) + sum (D)) / (count (D,) + count (2,))
Holistic Measures

median: value in the middle of a sorted series of values (= 50% quantile)
mode: value that appears most often in a set of values

rank: k-smallest / k-largest value (cf. quantiles, percentiles)

median (D, v D,) = simple_function (median (0,) + median (5,))
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Typical OLAP Operations

Roll up (drill-up): summarize data
. by climbing up hierarchy or by dimension reduction
Drill down (roll down): reverse of roll-up

from higher level summary to lower level summary or detailed
data, or introducing new dimensions

Slice and dice:
. Selection on one (slice) or more (dice) dimensions
Pivot (rotate):
. reorient the cube, visualization, 3D to series of 2D planes
Other operations
drill across: involving (across) more than one fact table

drill through: through the bottom level of the cube to its back-
end relational tables (using SQL)
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Chap. 2: Data Warehousing
and OLAP Technology for Data Mining

- What is a data warehouse?
. A multi-dimensional data model

. Data warehouse architecture
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A Star-Net Query Model

Customer Orders

Shipping Method

AIR-EXPRESS

Time Product
PRODUCT ITEM  pRréADUCT GROUP
S O%ES PERSON
—O_DISTRICT
REGION g X \o
DIVISION
Location Each circle is . o
called a footprint ~Promotion Organization
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Why Separate Data Warehouse?

High performance for both systems, OLTP and OLAP

DBMS — tuned for OLTP
. access methods

. indexing

. concurrency control

. recovery

Warehouse — tuned for OLAP
. complex OLAP queries
. multidimensional view
. consolidation
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Design of a Data Warehouse:
A Business Analysis Framework

Four views regarding the design of a data warehouse

. Top-down view
o allows selection of the relevant information necessary for the
data warehouse
Data source view
» exposes the information being captured, stored, and
managed by operational systems
Data warehouse view
o consists of fact tables and dimension tables
. Business query view

o sees the perspectives of data in the warehouse from the view
of end-user
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Multi-Tiered Architecture

other
sources

o >

Operational

Monitor
&
Integrator

Analysis
Query

Extract

DB Eralszorm Data Reports
oa .
Refresh Warehouse Data mining

il
il
il

Data Marts

« J 7 \ J <
g ~" v~

Data Sources Data Storage OLAP Engine Front-End Tools
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Data Warehouse Design Process

Top-down, bottom-up approaches or a combination of both
. Top-down: Starts with overall design and planning (mature)
. Bottom-up: Starts with experiments and prototypes (rapid)
From software engineering point of view

. Waterfall: structured and systematic analysis at each step before
proceeding to the next

. Spiral: rapid generation of increasingly functional systems, short
turn around time, quick turn around

Typical data warehouse design process
Choose a business process to model, e.g., orders, invoices, etc.
. Choose the grain (atomic level of data) of the business process
. Choose the dimensions that will apply to each fact table record
. Choose the measure that will populate each fact table record
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Three Data Warehouse Models

Enterprise warehouse
. collects all of the information about subjects spanning
the entire organization
Data Mart
. a subset of corporate-wide data that is of value to a
specific groups of users. Its scope is confined to
specific, selected groups, such as marketing data mart
o Independent vs. dependent (directly from warehouse) data mart
Virtual warehouse
. A set of views over operational databases
. Only some of the possible summary views may be
materialized
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OLAP Server Architectures

. Relational OLAP (ROLAP)

. Use relational or extended-relational DBMS to store and manage
warehouse data and OLAP middle ware to support missing pieces

. Include optimization of DBMS backend, implementation of
aggregation navigation logic, and additional tools and services

. greater scalability (?)

- Multidimensional OLAP (MOLAP)

. Array-based multidimensional storage engine (sparse matrix
techniques)

. fast indexing to pre-computed summarized data

- Hybrid OLAP (HOLAP)
. User flexibility, e.g., low level: relational, high-level: array
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Summary

. Data warehouse

. A subject-oriented, integrated, time-variant, and nonvolatile
collection of data in support of management’s decision-
making process

- A multi-dimensional model of a data warehouse
. Star schema, snowflake schema, fact constellations
. A data cube consists of dimensions & measures
- OLAP operations
. drilling, rolling, slicing, dicing and pivoting
- OLAP servers
. ROLAP, MOLAP, HOLAP
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Data Warehouse Back-End Tools and Utilities

- Data extraction
. get data from multiple, heterogeneous, and external sources

- Data cleaning
. detect errors in the data and rectify them when possible

- Data transformation
. convert data from legacy or host format to warehouse format

- Load

. sort, summarize, consolidate, compute views, check integrity, and
build indices and partitions

- Refresh
. propagate the updates from the data sources to the warehouse
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Data Preprocessing Why Data Preprocessing?

Data in the real world is dirty

incomplete: lacking attribute values, lacking certain attributes of
interest, or containing only aggregate data

noisy: containing errors or outliers
inconsistent: containing discrepancies in codes or names

- Why preprocess the data?
- Data cleaning

- Data integration and transformation
No quality data, no quality mining results!

Quiality decisions must be based on quality data

Data warehouse needs consistent integration of quality data

. Data reduction

. Discretization and concept hierarchy generation

- Summary
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Multi-Dimensional Measure of Data Quality Major Tasks in Data Preprocessing
A well-accepted multidimensional view: . Data cleaning
- Accuracy (range of tolerance) - Fill in missing values, smooth noisy data, identify or remove
Comp|eteneSS (fraction of missing Va|ues) OUtIierS, and resolve inconsistencies
Consistency (plausibility, presence of contradictions) . Data integration
. Timeliness (data is available /n time; data is up-to-date) - Integration of multiple databases, data cubes, or files
Believability (user’s trust in the data,; reliability) . Data transformation
- Value added (data brings some benefit) . Normalization and aggregation
/Io\nterprit_?blllty Ejtherg is somﬁz explinz}uon for the data) Data reduction
+ Accessibility (data is actually available) Obtains reduced representation in volume but produces the same or
Broad categories: similar analytical results
intrinsic, contextual, representational, and accessibility. - Data discretization

Part of data reduction but with particular importance, especially for
numerical data
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Data Preprocessing

- Why preprocess the data?

- Data cleaning

- Data integration and transformation

.- Data reduction

. Discretization and concept hierarchy generation

- Summary

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2044

Missing Data

Data is not always available
E.g., many tuples have no recorded value for several attributes,
such as customer income in sales data
Missing data may be due to
equipment malfunction
inconsistent with other recorded data and thus deleted
data not entered due to misunderstanding
certain data may not be considered important at the time of entry
not register history or changes of the data

Missing data may need to be inferred.

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2043

Data Cleaning

. Data cleaning tasks

Fill in missing values
Identify outliers and smooth out noisy data

. Correct inconsistent data
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How to Handle Missing Data?

Ignore the tuple: usually done when class label is missing (not effective
when the percentage of missing values per attribute varies considerably.

Fill in the missing value manually: tedious (i.e., boring & time-
consuming), infeasible?

Use a global constant to fill in the missing value: e.g., a default value, or
“unknown”, a new class?! — not recommended!

Use the attribute mean (average value) to fill in the missing value

Use the attribute mean for all samples belonging to the same class to fill
in the missing value: smarter

Use the most probable value to fill in the missing value: inference-based
such as Bayesian formula or decision tree



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2046 RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2047

Noisy Data How to Handle Noisy Data?
- Noise: random error or variance in a measured variable - Binning method:
- Incorrect attribute values may due to - first sort data and partition into (equi-depth) bins

then one can smooth by bin means, smooth by bin median,

faulty data collection instruments ! )
smooth by bin boundaries, etc.

data entry problems
data transmission problems . Clustering

technology limitation . detect and remove outliers

inconsistency in naming convention ) ) )
- Combined computer and human inspection

- Other data problems which requires data cleaning . detect suspicious values and check by human
duplicate records

incomplete data - Regression

inconsistent data - smooth by fitting the data into regression functions
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Noisy Data—Simple Discretization (1) Noisy Data—Simple Discretization (2)
+ Equi-width (distance) partitioning: _ _ _ . EqU| height (equi-depth, frequency) partitioning:
It divides the range into N intervals of equal size: uniform grid It divides the range into Nintervals, each containing approximately
if A and B are the lowest and highest values of the attribute, the same number of samples (quantile-based approach)
width of intervals will be: W = (B-A)/N. . Good data scaling
The most straightforward 12 - Managing categorical attributes
Shortcoming: outliers may dominate 101 can be tricky.
presentation af—1 ]
Skewed data is not handled well. J Same Example (here: 4 bins):
. e 5 7,8,8,9, 11, 13, 13, 14, 14,
- Example (data sorted, here: 10 bins): “[i{ '} |} 14. 15, 17, 17, 17, 18, 19, 23, 24.
5,7,8,8,9, 11, 13, 13, 14, 14, 2 A 25, 26, 26, 26, 27, 28, 32, 34, 34,
14, 15, 17, 17, 17, 18, 19, 23, 24, 0 G080

36, 37, 37, 38, 39, 97

25, 26, 26, 26, 27, 28, 32, 34, 36, SO LESOSSS
87, 38, 39, 97 VIS E SRS . 0 : 13 17| 26 100
Second example: same data set, insert 1023 - Median = 50%-quantile

\ 1 1 1 1 J - is more robust against outliers (cf. value 1023 from above)
1-200 201-400 401-600 .. 1001-1200
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V-optimal Histograms (1)
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- V-Optimal: (variance optimal)

Given a fixed number N of buckets, the sum En V; of weighted
variances is minimized, where 71;is the number of elements in
the jth bucket and V;is the varfance of the source values
(frequencies) in the j~th bucket.

Formally: N b ) )
o Minimize Y. ».(f(j)—avg,)
i=1 j=Ib;
where N number of buckets

Ib, ub, lower and upper bounds of /th bucket
f(j) number of occurrence of the value j
avg; average of frequencies occurring in ith bucket

V. Poosala, Y. E. loannidis, P. J. Haas, E. J. Shekita: /mproved Histograms for Selectivity
Estimatfon of Range Predicates. Proc. ACM SIGMOD Conf. 1996: 294-305

H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K.C. Sevcik, T. Suel, Optimal
histograms with quality guarantees. Proc. VLDB Conf. 1998: 275-286
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Noisy Data —
Binning Methods for Data Smoothing
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* Sorted data for price (in dollars): S 5 sy —— 11
4,8,9,15,21,21, 24, 25, 26, 28,29, 34 -
* Partition into (equi-depth) bins: HHHEHHEE
-Bin1: 4, 8,9, 15 p T
- Bin 2: 21, 21, 24, 25 0
- Bin 3: 26, 28, 29, 34 S —
soff  Ohin means =
* Smoothing by bin means: = i
-Bin1:9,9,9,9 15 HIHH H
- Bin 2: 23, 23, 23, 23 p nni
- Bin 3: 29, 29, 29, 29 0
* Smoothing by bin boundaries: L mbin boundaries
-Bin1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34
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V-optimal Histograms (2)
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Example:
Equi-depth histogram: frequency
- 1,2=1+4=5
. 3,4,5=4+0+1=5
- 6,7,8,910=0+2+0+1+2=5
V-optimal histogram: variance
- Bucket 1: (1-1)>=0
- Bucket 2: (4-4)2+(4-4)2=0
. Bucket 3: (0-6/7)%+(1-6/7)2 +(0-6/7)? +(2-6/7)2+(0-6/7)>+(1-6/7)2
+(2-6/7)2= 4,9
Original data districution

Equi-depth histogram V-optimal histogram

5 5 5
) 4 4 4
=)
[ 3 3 3
o
Z 2 2 2

L ‘ | | 1 i

0 i 0

12345656 78 010 1234 5 67 8 910 12232 45 6 7 8 810
attribute value altribule value allribute value
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Noisy Data—Cluster Analysis
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Detect and remove outliers
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Noisy Data—Regression

Smooth data
according to some
regression function Yl

Y1’

X1 X
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Data Integration

Data integration:

. combines data from multiple, heterogeneous sources into a
coherent store

Schema integration
integrate metadata from different sources

Entity identification problem: identify real world entities from
multiple data sources, e.g., A.cust-id = B.cust-#

Detecting and resolving data value conflicts

. for the same real world entity, attribute values from different
sources are different

possible reasons: different representations, different scales, e.g.,
metric vs. British units
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Data Preprocessing

- Why preprocess the data?

- Data cleaning

- Data integration and transformation

. Data reduction

. Discretization and concept hierarchy generation

- Summary
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Handling Redundant Data in Data Integration

Redundant data occur often when integrating multiple
databases

. The same attribute may have different names in different
databases

- One attribute may be a “derived” attribute in another table, e.g.,
birthday vs. age; annual revenue

Redundant data may be able to be detected by

correlational analysis

Careful integration of the data from multiple sources may
help reduce/avoid redundancies and inconsistencies and
improve mining speed and quality
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Data Transformation

Smoothing: remove noise from data
Aggregation: summarization, data cube construction
Generalization: concept hierarchy climbing
e.g., {young, middle-aged, senior} rather than {1...100}
Normalization: scaled to fall within a small, specified range
min-max normalization
z-score normalization (= zero-mean normalization)
normalization by decimal scaling
Attribute/feature construction

New attributes constructed from the given ones
e.g., age = years(current_date — birthday)
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Data Transformation: zero-mean Normalization

zero-mean (z-score) normalization
1

B V—meal),

std _dev,
. Leads to mean =0, std_dev =1
Particularly useful if

. min/max values are unknown
. QOutliers dominate min/max normalization
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Data Transformation: min-max Normalization

min-max normalization
new_max , —new_min ,
max , —min ,

v'=(v—-min,) +new_min ,

transforms data linearly to a new range
range outliers may be detected afterwards as well

new._max, slope is:
new_min, new_max —new_min
. max, —min
min, max,, *a A
RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2061

Data Transformation:
Normalization by Decimal Scaling

Normalization by decimal scaling

Y
V=—-
10’

where jis the smallest integer such that max(|v'|) < 1

New data range: 0<=|<1 ie., -1<v <1
Note that 0.1 < max(|v'|)

Normalization (in general) is important when considering
several attributes in combination.

Large value ranges should not dominate small ones of other
attributes

Example: age 0 ... 100 > 0 ... 1; income 0 ... 1.000.000 > 0 ... 1
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Data Preprocessing

Why preprocess the data?

Data cleaning

Data integration and transformation

Data reduction

Discretization and concept hierarchy generation

Summary
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Data Cube Aggregation

The lowest level of a data cube
- the aggregated data for an individual entity of interest
e.g., a customer in a phone calling data warehouse.

Multiple levels of aggregation in data cubes

Further reduce the size of data to deal with

Reference appropriate levels

Use the smallest representation which is enough to solve the task

Queries regarding aggregated information should be
answered using data cube, when possible
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Data Reduction Strategies

Warehouse may store terabytes of data: Complex data
analysis/mining may take a very long time to run on the
complete data set

Data reduction

Obtains a reduced representation of the data set that is much
smaller in volume but yet produces the same (or almost the same)
analytical results

Data reduction strategies
. Data cube aggregation

Dimensionality reduction

Numerosity reduction

Discretization and concept hierarchy generation
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Dimensionality Reduction

Feature selection (i.e., attribute subset selection):

Select a minimum set of features such that the probability
distribution of different classes given the values for those features is
as close as possible to the original distribution given the values of
all features

reduce number of patterns in the patterns, easier to understand

Heuristic methods (due to exponential # of choices):
- step-wise forward selection
. step-wise backward elimination
combining forward selection and backward elimination
decision-tree induction
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Example of Decision Tree Induction

Initial attribute set:

{A1, A2, A3, A4, A5, A6} A4 ?
A1? AB?

Class 1 @ Class 1 @‘

——————— > Reduced attribute set: {Al, A4, A6}
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Data Compression

. String compression
There are extensive theories and well-tuned algorithms
Typically lossless
(Limited) manipulation is possible without expansion

. Audio/video compression

Typically lossy compression, with progressive refinement (e.g.,
based on Fourier transform)

Sometimes small fragments of signal can be reconstructed
without reconstructing the whole

- Time sequence is not audio
Typically short and vary slowly with time
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Heuristic Feature Selection Methods

There are 29possible sub-features of d features

Several heuristic feature selection methods:
Best single features under the feature independence assumption:
choose by significance tests.

Best step-wise feature selection:
o The best single-feature is picked first
o Then next best feature condition to the first, ...

Step-wise feature elimination:
o Repeatedly eliminate the worst feature

Best combined feature selection and elimination
Optimal branch and bound:
o Use feature elimination and backtracking
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Data Compression

Original Data

Compressed
Data

lossless

Original Data
Approximated
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Wavelet Transforms

Discrete wavelet transform (DWT):
linear signal processing

Haar2 Daubechies4

Compressed approximation: store only a small fraction of the strongest
of the wavelet coefficients

Similar to discrete Fourier transform (DFT), but better lossy compression,
localized in space

Method:
Length, L, must be an integer power of 2 (padding with 0s, when necessary)
Each transform has 2 functions: smoothing, difference
Applies to pairs of data, resulting in two set of data of length L/2
Applies two functions recursively, until reaches the desired length
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PCA—Example

Old axes: X1, X2 X2

new axes: Y1, Y2

Y2

Y1

°o © o X1
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Principal Component Analysis (PCA)

Given N data vectors from A-dimensions, find ¢ <=k
orthogonal vectors that are best used to represent data

The original data set is reduced to one consisting of N data vectors
on ¢ principal components (reduced dimensions)

. Each data vector is a linear combination of the ¢ principal
component vectors

- Works for numeric data only
. Used when the number of dimensions is large

. PCA is also known as Karhunen-Loéve Transform (KLT) or
Singular Value Decomposition (SVD)
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PCA—Computation

Normalization
Adapt value ranges of the dimensions
Move mean values (center of mass) to origin

Compute principal components by a numerical method
Eigenvectors and Eigenvalues of covariance matrix
May use Singular Value Decomposition (SVD)

.- Use the PC”s for a base transformation of the data
Basic linear algebra operation: multiply matrix to data

. PC’”s are sorted in decreasing significance (variance)
Use first PC”s as a reduced coordinate system
Discard less significant PC directions
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Reduction by Random Projection

Characteristics of PCA
Optimal reconstruction of data (wrt. linear error)
Computation of PCs is O(n7 d' 3) for n points, d dimensions
Data transformation is O(ndk) for k reduced dimensions

Random Projection
Randomly choose & vectors in d dimensions to form a new base
- The new Ak-dimensional base is not necessarily orthogonal

. Characteristics of Random Projections
Fast precomputation O(dk), Data transformation is O(ndk)
Reconstruction quality of data is reported to be very good
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Linear Regression

Basic Idea: Data are modeled to fit a straight line

Y

X

Approach Y=a+pX

Two parameters , a and B specify the line and are to be
estimated by using the data at hand.

Fit the line by applying the least squares method to the known
values of Yz, Yz, ..., X1, X2, ...

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2075

Numerosity Reduction

Parametric methods

Assume the data fits some model, estimate model parameters,
store only the parameters, and discard the data (except possible
outliers)

Log-linear models: obtain value at a point in /77-D space as the
product on appropriate marginal subspaces

- Non-parametric methods
Do not assume models
Major families: histograms, clustering, sampling
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Multiple Regression

Basic idea: allows a response variable Y to be modeled
as a linear function of multidimensional feature vector

- Example: fit Y =5, + b, X, + b, X, todata (X, X5, V')
Many nonlinear functions can be transformed into the above,
e.g., X; =1, (v, v, Vy), X, = (v, v, V), i.e., model is fit to 4D
data (v,, v, V5, 2)
The parameters b,, b,, b, are determined by the least-squares
method
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Log-linear Model

Basic idea

Approximate discrete multi-dimensional probability distributions by
using lower-dimensional data

. Approach

The multi-way table of joint probabilities is approximated by a
product of lower-order tables.

Combine values of marginal distributions (higher degree of
aggregation, “margin” of a cube, coarse cuboid) to approximate
less aggregated values (“interior” cell in a data cube, fine-grained
cuboid)
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Clustering

Partition data set into clusters, and one can store cluster
representation only

Can be very effective if data is clustered but not if data is
“smeared”

Can have hierarchical clustering and be stored in multi-
dimensional index tree structures

There are many choices of clustering definitions and
clustering algorithms, see later
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Histograms

A popular data reduction technique

Divide data into buckets and store average (sum) for each
bucket

Related to quantization problems.
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Sampling

Allow a mining algorithm to run in complexity that is
potentially sub-linear to the size of the data

Choose a representative subset of the data

Simple random sampling may have very poor performance in the
presence of skew

Develop adaptive sampling methods
Stratified sampling:

o Approximate the percentage of each class (or subpopulation of
interest) in the overall database

o Used in conjunction with skewed data

Sampling may not reduce database 1/0s (page at a time).
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Sampling
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Hierarchical Reduction
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Use multi-resolution structure with different degrees of
reduction

Hierarchical clustering is often performed but tends to
define partitions of data sets rather than “clusters”

Parametric methods are usually not compatible with
hierarchical representation

Hierarchical aggregation

- An index tree hierarchically divides a data set into partitions by
value range of some attributes

Each partition can be considered as a bucket

- Thus an index tree with aggregates stored at each node is a
hierarchical histogram
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Sampling

Raw Data
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Cluster/Stratified Sample

00 o o ©
o o
00 0 0
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Example of an Index Tree
98 , 339 \ 839 954

7

N

| 23’ 47 \ 90\ 11011 123\ 178\ /3821 521\ 767\

| 876 ... 930 \ 986

997\

PLVVLT DAL

Different level histograms: 5 bins,

Approximation of equi-depth (“similar-depth™) histograms

Y \

20 bins, ...



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2086

Data Preprocessing

- Why preprocess the data?

- Data cleaning

- Data integration and transformation

.- Data reduction

- Discretization and concept hierarchy generation

- Summary
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Discretization and Concept Hierachy

Discretization

- reduce the number of values for a given continuous attribute
by dividing the range of the attribute into intervals. Interval
labels can then be used to replace actual data values.

Concept hierarchies

- reduce the data by collecting and replacing low level concepts
(such as numeric values for the attribute age) by higher level
concepts (such as young, middle-aged, or senior).
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Discretization

Three types of attributes:

. Categorical (nominal) — values from an unordered set
- Ordinal — values from an ordered set

. Continuous — real numbers

Discretization:
. divide the range of a continuous attribute into intervals
- Some classification algorithms only accept categorical attributes.
- Reduce data size by discretization
- Prepare for further analysis
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RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 2089

Discretization and concept hierarchy
generation for numeric data

Binning (see above)

Histogram analysis (see above)
Clustering analysis (see later)
Entropy-based discretization

Segmentation by natural partitioning
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Entropy-Based Discretization Segmentation by natural partitioning
Given a set of samples S, if S is partitioned into two intervals S; and S, - 3-4-5 rule can be used to segment numeric data into
using boundary T, the entropy after partitioning is relativelv uniform. “natural” intervals
5, 5, ; d | |
E(S.T) =mE”t(Sl)+ S| Ent(S,) ENt(S)= —Z P; |092(pi) . If an interval covers 3, 6, 7 or 9 distinct values at the most

L ) =1 ) significant digit, partition the range into 3 equi-width intervals
The boundary that minimizes the entropy function over all possible

boundaries is selected as a binary discretization.

Thus, the /nformation Gain I(S,T) is maximized:
I(S,T)=Ent(S)-E(S,T) - Ifit covers 1, 5, or 10 distinct values at the most significant digit,

partition the range into 5 intervals

- If it covers 2, 4, or 8 distinct values at the most significant digit,
partition the range into 4 intervals

The process is recursively applied to partitions obtained until some
stopping criterion is met, e.g., /(5,7) > &

Experiments show that it may reduce data size and improve
classification accuracy
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Example of 3-4-5 rule Example of 3-4-5 rule—Result
Given data: count

(-$400 -$5,000)

-$351 -$159 O $1,838  $4,700 profit

Min- Low lah - Max ($400-0)  (0-$1,000 (#1000 - 52,000 (#2000 -5, 000)
First step: O- ($1,000 -
. 90%-extraction: Low (5%-tile) = -$159, High (95%-tile) = $1,838 Ca00) $200) $1.200) 200
most significant digit = 1,000 - set Low = —$1,000 and High = $2,000 (:jgg) ($1,200 '
> 3 classes (-$300 % $1,400) 3,000
(-$1,000 - $2,000) -$200) ($400 - ($1,400 $4,000)
T (-$200 - $600) $1,600) ($4,000 -
(-$1,000- 0) (0 -$1,000) ($1,000 - $2,000) $100) (:ggg), 0. (81600 (6, cnp. $5,000)
Refinement: (-$100 - $1,000) ,800) $2,000)
: 0

include original Min/Max  (-$400 -$5,000)

(-$400-0) (0 -$1,000)  ($1,000 - $2, 000) ($2,000 - $5, 000)
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Concept hierarchy generation
for categorical data

Alternative approaches to specify concept hierarchies by
users or experts:

. Specify a partial ordering of attributes explicitly at the schema
level

e.g., Street < city < province_or_state < country

- Specify a portion of a hierarchy by explicit data grouping
e.g., {Sweden, Norway, Finland, Danmark} — Scandinavia,
{Scandinavia, Baltics, Central Europe, ...} c Europe

- Specify a set of attributes, but not their partial ordering
e.qg., {street, city, province_or_state, country}

- Specify only a partial set of attributes
e.g., {cty}
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Data Preprocessing

- Why preprocess the data?

- Data cleaning

- Data integration and transformation

- Data reduction

. Discretization and concept hierarchy generation

- Summary
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Specification of a set of attributes

Concept hierarchy

. can be automatically generated based on the number of distinct
values per attribute in the given attribute set

- the attribute with the most distinct values is placed at the lowest
level of the hierarchy

country 15 distinct values

@@ 65 distinct values
QD 3567 distinct values

street 674,339 distinct values

Counter example: 20 distinct years, 12 months, 7 days_of_the_week
but not ,year < month < days_of_the_week" with the latter on top

@
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Summary

Data preparation is a big issue for both warehousing
and mining
Data preparation includes

Data cleaning and data integration

Data reduction and feature selection

Discretization
A lot a methods have been developed but still an active
area of research
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What is Clustering? Measuring Similarity
Grouping a set of data objects into clusters . To measure similarity, often a distance function diist is used
. Cluster: a collection of data objects . Measures “dissimilarity” between pairs objects xand y
o Similar to one another within the same cluster o Small distance disf(x, )): objects x and y are more similar
o Dissimilar to the objects in other clusters o Large distance disf(x, y): objects x and y are less similar
Clustering = unsupervised classification (no predefined classes) . Properties of a distance function
Typical usage . dist(x, ) >0 (positive semidefinite)
As a stand-alone tool to get insight into data distribution . disi(x, ) =0iff x=y (definite)
As a preprocessing step for other algorithms . dist(x, y) = dist(y, X) (symmetry)

If distis a metric, which is often the case:
dist(x, 2) < disi(x, y) + dis{(y, z) (triangle inequality)

Definition of a distance function is highly application dependent
May require standardization/normalization of attributes
Different definitions for interval-scaled, boolean, categorical, ordinal

and ratio variables
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Example distance functions (1)

For standardized numerical attributes, i.e., vectors x = (x;, ..., X,) and
y= W4, -, V) from a d-dimensional vector space:

P
Vi

p = 2: Euclidean Distance (cf. Pythagoras) 4,(x,y)= ﬁ(xi -y,)
i=1
d

p = 1: Manhattan-Distance (city block)

d
General L,-Metric (Minkowski-Distance)  d,(x,y)=7

<i<df

p — oo Maximum-Metric d, (x,y)= max{ ’

For sets xand y:  d_ (x,y)= ruyl=lrny] k\yuyiy

xuy Uy
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General Applications of Clustering

Pattern Recognition and Image Processing
Spatial Data Analysis

. create thematic maps in GIS (Geographic Information Systems) by
clustering feature spaces

detect spatial clusters and explain them in spatial data mining
Economic Science (especially market research)
WWW

Documents (Web Content Mining)

Web-logs (Web Usage Mining)
Biology

Clustering of gene expression data
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Example distance functions (2)

For categorical attributes: Hamming distance
d
dist(x,y) = 25(xi=y[) where 5(x;,y,) =
i=l1
For text documents:
A document Dis represented by a vector /(D) of frequencies o{ Fhe

terms occuring in D, €.9.,  (d) = {10g(f( )) tieT}X
where £ (¢, D) is the frequency of term £ in document D

0 ifx, =y,
1 else

The distance between two documents D, and D, is defined by the
cosine of the angle between the two vectors x = r(D,)and y = n(D,):
(x,y) where ( ., . ) denotes the inner product
dist(x,y) =1 _W and | . | is the length of vectors

The cosine distance is semi-definite (e.g., permutations of terms)
(x.y) =] [y] cos £(x. )
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A Typical Application: Thematic Maps

Satellite images of a region in different wavelengths

. Each point on the surface maps to a high-dimensional feature
vector p = (x,, ..., X;) where x;is the recorded intensity at the
surface point in band .

. Assumption: each different land-use reflects and emits light of
different wavelengths in a characteristic way.

Cluster 2
Cluster 1 '

Cluster 3

Band 2
16.5 18.0 20.0 22.0

Surface of the earth Feature-space

(12),(17.5)

(8.5),(18.7)

o “\
(]
11N
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Application: Web Usage Mining

Determine Web User Groups

Sample content of a web log file

romblon.informatik.uni- hen.de lopa - [04/Mar/1997:01:44:50 +0100] "GET /~lopa/ HTTP/1.0" 200 1364
romblon.informatik.uni: hen.de lopa - [04/Mar/1997:01:45:11 +0100] "GET /~lopa/x/ HTTP/1.0" 200 712
fixer.sega.co.jp unknown - [04/Mar/1997:01:58:49 +0100] "GET /dbs/porada.html HTTP/1.0" 200 1229

scooter.pa-x.dec.com unknown - [04/Mar/1997:02:08:23 +0100] "GET /dbs/kriegel_e.html HTTP/1.0" 200 1241

Generation of sessions

—> Session::= <IP_address, user_id, [URL,, . . ., URL/]>

which entries form a single session?

roy-pny_[x-r)uly-x)

Distance function for sessions: d(x,y)=
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Chapter 3: Clustering

Introduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

K-Means

K-Medoid

Choice of parameters: Initialization, Silhouette coefficient
Density-based Methods: DBSCAN
Hierarchical Methods

Density-based hierarchical clustering: OPTICS

Agglomerative Hierarchical Clustering: Single-Link + Variants
Scaling Up Clustering Algorithms

BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering

Uyl x Uyl
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Major Clustering Approaches

Expectation Maximization

Partitioning algorithms

. Find & partitions, minimizing some objective function
Hierarchy algorithms

. Create a hierarchical decomposition of the set of objects
Density-based

. Find clusters based on connectivity and density functions
Subspace Clustering
Other methods

. Grid-based

. Neural networks (SOM’s)

. Graph-theoretical methods
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Expectation Maximization (EM)

Basic Notions [Dempster, Laird & Rubin 1977]

Consider points p = (x, ..., X,) from a d-dimensional Euclidean
vector space

Each cluster is represented by a probability distribution
Typically: mixture of Gaussian distributions
Single distribution to represent a cluster C

o Center point pof all points in the cluster

o dx d Covariance matrix X for the points in the cluster C
Density function for cluster C:

ol e e

1
PO =g e
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EM: Gaussian Mixture — 2D examples

A single Gaussian A Gaussian mixture model, £ = 3
density function |
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EM — Algorithm

ClusteringByExpectationMaximization (point set D, int k)
Generate an initial model M’ = (&, ..., &)
repeat
// (re-) assign points to clusters
For each object x from D and for each cluster (= Gaussian) G,
compute P(x| G), P(x) and P(C]x)
// (re-) compute the models
For each Cluster ¢, compute a new model M = {C, ..., G} by
recomputing W, p-and X
Replace M by M
until [E(M) -E(M")| < ¢
return M
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EM — Basic Notions

Density function for clustering M= {C, ..., G}

Estimate the a-priori probability of class C,, P(C,), by the relative frequency
W, i.e., the fraction of cluster G, in the entire data set D:

P(x)=Y Wi P(x|C)

Assignment of points to clusters
A point may belong to several clusters with different probabilities P(x|C))

P(x| Ci) cf. Bayes Rule:

P(C; [x)=W, P(x) P(C,|x)-P(x)=P(x|C,)- P(C,)

Maximize £(M), a measure for the quality of a clustering M

E(M) indicates the probability that the data D have been generated by
following the distribution model M

E(M)=7}, _ log(P(x))
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EM — Recomputation of Parameters

Weight W, of cluster C W, :lz L P(C|x)
n Xe.

= a-priori probability P(C)

ZXEDX'P(CI' |x)
Y., PC 1)

Center p;of cluster G H; =

P(C. —uYx—u)
Covariance matrix =, 2,. = Z“D G |x)(x y,)(x #’)
of cluster C, > P(C |x)

—
b oA~

ok oot [
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EM — Discussion

Convergence to (possibly local) minimum
Computational effort:
O(n - k - #iterations)
#iterations is quite high in many cases
Both result and runtime strongly depend on
the initial assignment
a proper choice of parameter & (= desired number of clusters)
Madification to obtain a really partitioning variant
Objects may belong to several clusters

Assign each object to the cluster to which it belongs with the highest
probability
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Partitioning Algorithms: Basic Concept

Goal: Construct a partition of a database D of 17 objects into a set of &
clusters minimizing an objective function.

. Exhaustively enumerating all possible partitions into 4 sets in order
to find the global minimum is too expensive.
Heuristic methods:
Choose k representatives for clusters, e.g., randomly
Improve these initial representatives iteratively:
o Assign each object to the cluster it “fits best” in the current clustering
o Compute new cluster representatives based on these assignments

o Repeat until the change in the objective function from one iteration to the
next drops below a threshold

Types of cluster representatives
k-means: Each cluster is represented by the center of the cluster
k-medoid: Each cluster is represented by one of its objects
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K-Means Clustering: Basic Idea

Obijective: For a given &, form k groups so that the sum of the
(squared) distances between the mean of the groups and their
elements is minimal.

A

Poor Clustering

. Optimal Clustering
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K-Means Clustering: Algorithm

Given k, the ~-means algorithm is implemented in 4 steps:

1. Partition the objects into A nonempty subsets

2. Compute the centroids of the clusters of the current partition.

The centroid is the center (mean point) of the cluster.

3. Assign each object to the cluster with the nearest
representative.

4. Go back to Step 2, stop when representatives do not change.
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K-Means Clustering: Basic Notions

Objects p = (»,, ..., x*,) are points in a d-dimensional vector space
(the mean of a set of points must be defined)

1
Centroid pc: Mean of all points in a cluster C, . = |E le.

x;eC

Measure for the compactness (, Total Distance") of a cluster C;:

TD(C)) = [ dist(p.pc.)
peC;

Measure for the compactness of a clustering

TD = /Zk:TDz(Cj)
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K-Means Clustering: Example
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K-Means Clustering: Discussion

Strength

Relatively efficient: O(tkn), where nis # objects, kis # clusters, and ¢
is # iterations

Normally: &, t<< n
Easy implementation

Weakness
Applicable only when mean is defined ,
Need to specify &, the number of clusters, in advance 7 .
Sensitive to noisy data and outliers &t
Clusters are forced to have convex shapes
Result and runtime are very dependent on the initial partition; often
terminates at a /ocal optimum — however: methods for a good
initialization exist

Several variants of the A~~means method exist, e.g. ISODATA

Extends A~-means by methods to eliminate very small clusters, merging
and split of clusters; user has to specify additional parameters

‘I—-\\
.
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K-Medoid Clustering: Basic Idea

Objective: For a given &, find & representatives in the dataset so
that, when assigning each object to the closest representative, the
sum of the distances between representatives and objects which
are assigned to them is minimal.

Medoid: representative object “in the middle” (cf. median)
Data Set Poor Clustering Optimal Clustering
1

<— Medoid

1 5
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K-Medoid Clustering: Basic Notions

Requires arbitrary objects and a distance function
Medoid mc: representative object in a cluster C

Measure for the compactness of a cluster C:

TD(C) =) dist(p,m)

peC
Measure for the compactness of a clustering

TD = iTD(Ci)

i=1
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K-Medoid Clustering: PAM Algorithm

Partitioning Around Medoids [Kaufman and Rousseeuw, 1990]
Given &, the ~-medoid algorithm is implemented in 5 steps:

1. Select & objects arbitrarily as medoids (representatives);
assign each remaining (non-medoid) object to the cluster with
the nearest representative, and compute TDent:

2. For each pair (medoid M, non-medoid N)

+ compute the value TD,_,,, i.e., the value of TD for the partition
that results when “swapping” Mwith /

3. Select the non-medoid A for which TD,_,,, is minimal
4. If TDy,,, is smaller than TD et
+ Swap Vwith M
¢ Set TD¢yrent 1= TDyepu
+ Go back to Step 2
5. Stop.
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CLARANS Selection of Representatives

CLARANS (objects DB, integer k, real dist, integer numlocal, integer maxneighbor)
for r from 1 to numlocal do
Randomly select k objects as medoids
Leti:=0
while i < maxneighbor do
Randomly select (Medoid M, Non-medoid N)
Compute changeOfTD_:= TDy - TD
if changeOfTD < 0 then
substitute M by N
TD := TDym
i:=0
elsei=i+1
if TD < TD_best then
TD_best := TD; Store current medoids
return Medoids
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K-Medoid Clustering: CLARA and CLARANS

CLARA [Kaufmann and Rousseeuw,1990]

. Additional parameter: numlocal

. Draws numlocal samples of the data set

. Applies PAM on each sample

. Returns the best of these sets of medoids as output
CLARANS [Ng and Han, 1994)

. Two additional parameters: maxneighbor and numilocal

. At most maxnejghbor many pairs (medoid M, non-medoid V) are
evaluated in the algorithm.

. The first pair (M, N) for which TD,_,,, is smaller than TD_eq: IS
swapped (instead of the pair with the minimal value of TD,,,, )

. Finding the local minimum with this procedure is repeated
numlocal times.

Efficiency: runtime(CLARANS) < runtime(CLARA) < runtime(PAM)

RWTH Aachen, Informatik 9, Prof. Seidl

K-Medoid Clustering: Discussion
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Strength
Applicable to arbitrary objects + distance function
Not as sensitive to noisy data and outliers as A~-means
Weakness
Inefficient

Like ~~-means: need to specify the number of clusters & in advance,
and clusters are forced to have convex shapes

Result and runtime for CLARA and CLARANS may vary largely due to
the randomization

20 rectangular
clusters out of
--- 2000 points
- - 3000 points

as)

1 e e 19

relative avg. distance
runtime (in se
4 0

TD(CLARANS)
TD(PAM)

125 o 7% P

pereentage of neighbors
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Chapter 3: Clustering Initialization of Partitioning Clustering Methods

Introduction to clustering

F Reina and Bradley 1
Expectation Maximization: a statistical approach [Fayyad, aand Bradley 1398]

Partitioning Methods . Draw m different (small) samples of the dataset
E'megné'd . Cluster each sample to get m estimates for 4 representatives
-Vledol
Choice of parameters: Initialization, Silhouette coefficient A=Ay Ay o Adr B= By v oy By veey M= My i My)
Density-based Methods: DBSCAN . Then, cluster theset DS=Au Bu ... U M mtimes,

Hierarchical Methods
Density-based hierarchical clustering: OPTICS . o
Agglomerative Hierarchical Clustering: Single-Link + Variants - Use the best of these /m clusterings as initialization for the
Scaling Up Clustering Algorithms partitioning clustering of the whole dataset
BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics
Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering

using the sets A, B, ..., Mas respective initial partitioning
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Initialization of Partitioning Clustering Methods Choice of the Parameter k&
Example . Idea for a method:
Determine a clustering for each k= 2, ... 1
A D3 Choose the ,best" clustering
IR But how can we measure the quality of a clustering?
N C1 . Di B3 . A measure has to be independent of .
X o A C2 . The measures for the compactness of a clustering TD? and TD are
BI monotonously decreasing with increasing value of 4.
- Silhouette-Coefficient [Kaufman & Rousseeuw 1990]
whole dataset DS . Measure for the quality of a ~means or a A~-medoid clustering that is
k=3 m=4samples A, B, C, D independent of 4.

X true cluster centers
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The silhouette coefficient (1)

- Basic idea:
. How good is the clustering = how appropriate is the mapping
of objects to clusters

. Elements in cluster should be ,similar" to their representative
- measure the average distance of objects to their representative: a
. Elements in different clusters should be , dissimilar®

- measure the average distance of objects to alternative cluster
(i.e. second closest cluster): b
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The silhouette coefficient (3)

,Reading" the silhouette coefficient
. how good is the assignment of oto its cluster
o §(0) = -1: bad, on average closer to members of B
o 5(0) = 0: in-between Aand B
o S(0) = 1: good assignment of oto its cluster 4

Silhouette Coefficient s, of a clustering: average silhouette of all
objects

o 0.7 < 5-< 1.0 strong structure, 0.5 < 5-< 0.7 medium structure
o 0.25 < 5-< 0.5 weak structure, s-< 0.25 no structure
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The silhouette coefficient (2)

a(o). average distance between object o and the objects in its cluster A

a(o) = L Zdist(o,p)

peC(o)

b(o): average distance between object o and the objects in its “second
closest” cluster B

b(o)= min (1 Zdist(O,p)j

C,#C(0) ‘Ci =
’

The silhouette of ois then defined as

__b(o)—a(o)
$(0) = ax ta(0).b(o)]

The values of the silhouette coefficient range from —1 to +1
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Density-Based Clustering

Basic Idea: T e
Clusters are dense regions in the data | i I I L :‘:e’. °
space, separated by regions of lower 4 il iees

. . Steoosog et e
object density %o oo, .
oo
Why Density-Based Clustering? B W

Results of a &
medoid
algorithm for k=4

4|+

Different density-based approaches exist (see Textbook & Papers)
Here we discuss the ideas underlying the DBSCAN algorithm
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Density Based Clustering: Basic Definitions

p directly density-reachable from g
w.r.t. & MinPtsif

1) pe N(g) and

2) gis a core object w.r.t. & MinPts

density-reachable: transitive closure °
of directly density-reachable °

pis density-connectedto a point g
w.r.t. ¢ MinPtsif there is a point o such
that both, pand g are density-reachable o
from ow.r.t. g MinPts.
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Density Based Clustering: Basic Concept

Intuition for the formalization of the basic idea

For any point in a cluster, the local point density around that point has
to exceed some threshold

The set of points from one cluster is spatially connected
Local point density at a point p defined by two parameters

&— radius for the neighborhood of point q:

N.(g) :={pin data set D | dis{(p, g) < €}

MinPts — minimum number of points in the given neighbourhood M p)
g is called a core object (or core point) w.r.t. & MinPts if

| N.(q) | = MinPts .
° o

o \ ° o
o
. . . o (e}
MinPts =5 > q is a core object © o SA)
o
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Density Based Clustering: Basic Definitions

Density-Based Cluster: non-empty subset S of database D satisfying:

1) Maximality. if pisin Sand gis density-reachable from pthen gisin S
2) Connectivity. each object in Sis density-connected to all other objects

Density-Based Clustering of a database D: {S,, ..., S,; N} where
S, ..., S, all density-based clusters in the database D
N=D\{S, ..., S, is called the noise (objects not in any cluster)

O]
\ / Noise

Border | \_ Q (D oo o
690 0® £€=1.0
Core ) Q‘I MinPts =5
_éo
@)
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Density Based Clustering: DBSCAN Algorithm

- Density Based Spatial Clustering of Applications with Noise
- Basic Theorem:

. Each object in a density-based cluster C is density-reachable
from any of its core-objects

. Nothing else is density-reachable from core objects.

for each 0o € D do
if o is not yet classified then
if o0 is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE

. density-reachable objects are collected by performing
successive e-neighborhood queries.

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 3047

DBSCAN Algorithm: Example

. Parameter
o &= 20
o MinPts=3

for each 0 € D do
if o is not yet classified then
if o0 is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE
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DBSCAN Algorithm: Example

. Parameter
o &= 20
o MinPts =3

for each o € D do
if o is not yet classified then
if 0 is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE
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DBSCAN Algorithm: Example

. Parameter
o &= 20
o MinPts =3

for each o € D do
if o is not yet classified then
if 0 is a core-object then
collect all objects density-reachable from o
and assign them to a new cluster.
else
assign o to NOISE
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DBSCAN Algorithm: Performance

Runtime complexity: O(n * cost for neighborhood query)

N,-query DBSCAN
- without support (worst case): O(n) Oo(n?)
- tree-based support (e.g. R*-tree) : O(log(n)) O(n * log(n) )
- direct access to the neighborhood: o(1) O(n)

Runtime Comparison: DBSCAN (+ R*-tree) <> CLARANS

Time (sec.)
No. of Points| 1,252| 2,503| 3,910 5,213| 6,256 7,820| 8,937| 10,426 12,512| 62,584
DBSCAN 3 7 11 16 18 25 28 33 42 233
CLARANS 758| 3,026| 6,845 11,745 18,029] 29,826| 39,265 60,540| 80,638| ??7??
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Determining the Parameters ¢ and MinPts

»

= Example A-distance plot
1 dim=2-—> MinPts =3
2  Identify border object
3 Sete

first ,,valley*

™ 3-distance

Objects

,.border object™

Heuristic method:
Fix a value for MinPts
. (default: 2 x d — 1, d = dimension of data space)
User selects “border object” o from the MinPts-distance plot;
¢ is set to MinPts-distance(o)
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Determining the Parameters ¢ and MinPts

Cluster: Point density higher than specified by ¢ and MinPts
Idea: use the point density of the least dense cluster in the data
set as parameters — but how to determine this?

Heuristic: look at the distances to the A-nearest neighbors

3-distance(p) : ——
Q (o) o
7 o 3-distance(q) : —»

Function k-dlistance(p): distance from pto the its A-nearest
neighbor

k-distance plot. k-distances of all objects, sorted in decreasing
order
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Determining the Parameters ¢ and MinPts

- Problematic example

: / A,B,C
ol B,D,E
% \_\/
2 E B, D% F,G
A N
h ™ D1, D2,
Gl, G2, G3
Objects
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Density Based Clustering: Discussion

. Advantages

. Clusters can have arbitrary shape and size, i.e. clusters are not
restricted to have convex shapes

. Number of clusters is determined automatically
Can separate clusters from surrounding noise
Can be supported by spatial index structures

. Disadvantages
Input parameters may be difficult to determine
In some situations very sensitive to input parameter setting
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From Partitioning to Hierarchical Clustering

Global parameters to separate all clusters with a partitioning
clustering method may not exist

.' . . . '. . . . .© .
. @ X %%% and/or :
). .. hierarchical largely differing

* cluster structure : - densities and sizes

» Need a hierarchical clustering algorithm in these situations
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Hierarchical Clustering: Basic Notions

Hierarchical decomposition of the data set (with respect to a given
similarity measure) into a set of nested clusters

Result represented by a so called dendrogram (greek devspo = tree)
. Nodes in the dendrogram represent possible clusters

. can be constructed bottom-up (agglomerative approach) or top
down (divisive approach)

Sltep 0 Sltep 1 Sltep 2 %tep 3 ?tep 4

agglomerative

divisive

I I I I I
Step4 Step3 Step2 Step 1 Step 0
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Hierarchical Clustering: Example

Interpretation of the dendrogram
The root represents the whole data set
A leaf represents a single objects in the data set
An internal node represent the union of all objects in its sub-tree

The height of an internal node represents the distance between its

two child nodes ,
\

A distance
- o —  between
- oS &9 clusters
- o7 —
5_
- 2 o &b ==
— 3 ®5
- el =
1
——t—t —— -0
1 s 1 2 3 4 5 6 71 8 9
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Density-Based Hierarchical Clustering

Observation:. Dense clusters are completely contained

by less dense clusters
. C° . D°

R MR

Idea: Process objects in the “right” order and keep track of point

density in their neighborhood c MinPis =3
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Core- and Reachability Distance

Parameters: “generating” distance &, fixed value MinPts

core-distance, y;np( 0)
“smallest distance such that ois a core object”

f h - n H < .\\?n h 1
(if that distance is < ¢; “?" otherwise) MinPts =5

reachability-distance, p;np (P, 0)

“smallest distance such that pis
directly density-reachable from o”
(if that distance is < ¢;"?"” otherwise)

dist(p,0) dist(p,0) > c—dist(o)

r —dist(p,0)=4c—dist(o) dist(p,o0)<c—dist(o) — ﬁg(zriizilgzl'?ig/c—%zggance

undef dist(p,0) > & reachability-distanceg:o;
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The Algorithm OPTICS The Algorithm OPTICS

ControlList ordered b
- OPTICS: Ordering Points To Identify the Clustering Structure foreach o € Database reachability-distance.y

. . // initially, o.processed = false for all objects o
- Basic data structure: controlList

. e if o.processed = false;
. Memorize shortest reachability distances seen so far cluster-ordered

- ) . i t “?”) int trolList;
(“distance of a jump to that point”) insert (o, ™) into ControlList; = file
while ControlList is not empty

select first element (o, r-dist) from ControlList;
retrieve N (o) and determine ¢_dist= core-distance(o);
set o.processed = true;
write (o, r_dist, c_dist) to file;
if o is a core object at any distance < &
foreach p € N (o) not yet processed,;
determine r_dist, = reachability-distance(p, o);
if (p, ) ¢ ControlList
insert (p, r_dist,) in ControlList;
else if (p, old_r_dist) € ControlList and r_dist, < old_r_dist
update (p, r_dist,) in ControlList;

- Visit each point
. Make always a shortest jump

«  Output:
. order of points
. core-distance of points
. reachability-distance of points

database
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OPTICS: Properties OPTICS: The Reachability Plot

- “Flat” density-based clusters wrt. £ * < ¢ and MinPts afterwards: - represents the density-based clustering structure
. Starts with an object o where c-dist(0) < ¢ *and r-disf(0) > ¢ * . easy to analyze
. Continues while r-dist< ¢* . . .
. independent of the dimension of the data
via 17 .
//3 16\}4 —18 ol '34
J6 o7
'18

[Core-distance  |Reachability-distance

- Performance: approx. runtime( DBSCAN(g, MinPts) )

. O( n* runtime(e-neighborhood-query) ) — >
o without spatial index support (worst case): O( 72 ) cluster ordering cluster ordering
o e.g. tree-based spatial index support: O( 77 * log(n) )

reachability distance
reachability distance

»
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OPTICS: Parameter Sensitivity Chapter 3: Clustering

Introduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

K-Means

K-Medoid

Choice of parameters: Initialization, Silhouette coefficient
Density-based Methods: DBSCAN
Hierarchical Methods

Relatively insensitive to parameter settings

Good result if parameters are just
“large enough”

MinPis = 10. & = 10 MinPis =10.£ =5 MinPts=2, =10 . Density-based hierarchical clustering: OPTICS
’ ’ Agglomerative Hierarchical Clustering: Single-Link + Variants
1 > 3 ! 247 . Scaling Up Clustering Algorithms
1 2 3 . BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering

Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Agglomerative Hierarchical Clustering Single Link Method and Variants
1. [Initially, each object forms its own cluster - Given: a distance function dist(p, g) for database objects
Compute all pairwise distances between the initial clusters - The following distance functions for clusters (i.e., sets of objects) X
(objects) and Yare commonly used for hierarchical clustering: 1%
3. Merge the closest pair (A, B) in the set of the current clusters S .
into a new cluster C = AU B W/

Single-Link: dist _sl(X,Y)= min dist(x,y)
4. Remove A and B from the set of current clusters; insert C into xeX,yeY

the set of current clusters

5. If the set of current clusters contains only C (i.e., if C s . _ .
represents all objects from the database): STOP Complete-Link: dist _cl(X,Y)= xglflyéy dist(x,y)

6. Else: determine the distance between the new cluster C and
all other clusters in the set of current clusters; go to step 3.

. 1
Average-Link: 1 - .
> Requires a distance function for clusters (sets of objects) & dist _al(X,Y) | X || Y|

Z dist(x,y)

xeX,yeY
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Hierarchical Clustering: Discussion

Advantages

. Does not require the number of clusters to be known in
advance

. No (standard methods) or very robust parameters (OPTICS)
Computes a complete hierarchy of clusters
Good result visualizations integrated into the methods

A “flat” partition can be derived afterwards (e.g. via a cut
through the dendrogram or the reachability plot)

Disadvantages
May not scale well
o Runtime for the standard methods: O(2 log r#)
o Runtime for OPTICS: without index support O(%)
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Scaling-Up Clustering Algorithms
by using Data Reduction/Summarizations

Basic Idea:
Data . Derive
» reduction Clustering approximation Approximate
Original @ _ _— result for full
data set data set
Reduced Temporary
data items result

— Small Loss in Accuracy

+ Large Performance Boost

Most simple approach: Random Sampling
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Chapter 3: Clustering

Introduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

K-Means

K-Medoid

Choice of parameters: Initialization, Silhouette coefficient
Density-based Methods: DBSCAN
Hierarchical Methods

Density-based hierarchical clustering: OPTICS

Agglomerative Hierarchical Clustering: Single-Link + Variants
Scaling Up Clustering Algorithms

BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Chapter 3: Clustering

Introduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

K-Means

K-Medoid

Choice of parameters: Initialization, Silhouette coefficient
Density-based Methods: DBSCAN
Hierarchical Methods

Density-based hierarchical clustering: OPTICS

Agglomerative Hierarchical Clustering: Single-Link + Variants
Scaling Up Clustering Algorithms

BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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BIRCH (1996)

Birch: Balanced Iterative Reducing and Clustering using Hierarchies,
by Zhang, Ramakrishnan, Livny (SIGMOD96)

Incrementally construct a CF (Clustering Feature) tree, a
hierarchical data structure for multiphase clustering

Phase 1: scan DB to build an initial in-memory CF tree (a multi-
level compression of the data that tries to preserve the inherent
clustering structure of the data)

Phase 2: use an arbitrary clustering algorithm to cluster the leaf
nodes of the CF-tree

Scales linearly: finds a good clustering with a single scan and
improves the quality with a few additional scans

Weakness: handles only numeric data, and sensitive to the order of
the data record.
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BIRCH — Basic Notions

Clustering Feature CF = (N, LS, SS) of a set of points C= {X}
. N=|C| count(x), number of points in C

LS = ZZI X. sum(x), linear sum of the NV data points in C

1

SS = Zil X}  sum(x*x), square sum of the N data points in C

Information stored in CFs is sufficient to compute
. Centroids
Measures for the compactness of clusters (e.g., TD, TD?)
Distance measure for clusters
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Clustering of Data Summarizations: BIRCH

Basic Idea

. Construct a partitioning of a data set into “micro-
clusters” using an efficient index-like structure

. Micro-Clusters, i.e., sets of object are described in a
compact way by Clustering Features (CFs)

. CFs are organized hierarchically in a balanced tree

. A standard clustering algorithm is then applied to
the leaf nodes of the CFtree
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BIRCH — Clustering Feature Tree (CF tree)

Additivity theorem for CFs G = (N,LS5,,55) and G, = (M, LS,,55,):
CF(G U G) = CF(G) + CF(G) = (M # My, LS, + LS), S5+ 55))

> CFs can be computed incrementally
A CF Tree with parameters B, L, T has the following properties
. An internal node contains at most B entries [ CF, child] &2
. A leaf node contains at most £ entries [ CF] \
. The diameter of all entries in a leaf nodeisat most 7 777 T <~ —
Leaf nodes are connected via prevand nextpointers (&= 5=
CF Tree construction
- Transform a point pinto a CF-vector CF,=(1, p, /%)
Insertion of pinto the tree is analog to insertion into a B*-tree

If the threshold T is violated by the insertion, the corresponding leaf
node is split; reorganization of the tree in case of a split is again analog
to the reorganization in B*-trees
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BIRCH — Example for a CF Tree

B=7,L=5
CF, | CF, | CF, CF,
child; | child, | child; childg

Root

Internal Nodes

prev| CFgo| CFgy| = CF,,| next prev|CFos|CFyq

 |CFg| next <— T eaf Nodes
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Hierarchical clustering of summarized data items

Compression to & objects

. Absolute sample size has to be
very large in order to obtain good
result for large data sets

. CF centers are not suitable

z

< All 1,000,000 Points

k=10,000 k=1,000 k=200
o0 . . .
g
T 4 H_AAJ u
S s .
T : :_
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BIRCH — Discussion

Benefits

. Compression factor can be tuned to the available main memory

. Efficient construction of a micro-clustering (O(n))

. Good clustering result for partitioning iterative-refinement
clustering algorithms such as k-means and k-medoid when
applied to only the leaf nodes of a CF-tree

Limitations

. Only for data from a Euclidean vector space (linear sum,

square sum, mean, etc must be defined)

. Sensitive to the order of the data records
. How to utilize CFs for hierarchical clustering algorithms?
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Problems Clustering Summarized Data Items

- Structural Distortion Using High Reduction Rates
All Points 200 Sample Points

- Approximation of the Final Result

. What are the reachability values in the final
reachability plot?

o Objects can be assigned to their representatives,
but the result is a graphical representation, not clusters
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Reasons for Structural Distortions I

Distances between sets of original objects are poorly approximated
by distance between their representatives

- dist(rA,rB) . _— — dist(rC,rD) .
: . : ' o
o .'. ®
LI 0 @ LI 0,0 8J°
°o ! ®e® 0 °o 0% %, ° ¢ o
1 1 [ ] ® 1 ) (] | (] ® ..
o—o————00 .A#._L.
°d e | ?Oo.‘fB . °Ce . Peo® .I’D S°,
e o © 10y ©® e o0 © | © ®g © 00
: L JC PP
: ' | | @9 ® ..
“true distance” # “true distance”
= better approximation needed for the distance between
representatives and the points they represent
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Data Bubbles

A Data Bubble for a set of objects Xis a tuple
B=(n, rep, extent, nnDist) where
n is the number of objects in X
repis a representative object for X
extentis an estimation of the “radius” of X

. nnDistis a partial function, estimating 4-nearest neighbor
distances in X (defined at least for k=1, ..., MinPts)

nnDist(1)

nnDist(2)

nnDist(MinPts)
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Reasons for Structural Distortions II

Reachability distances for representatives poorly approximate
reachability distances for represented objects

.Q. P e.
® o o e o0 o
® e © )
[ %F.X 4 ”s rY
... ()

“reachability distances computed between representatives”’

—— “true reachability distances”
= better approximation needed of the true reachability for

representatives and the points they represent
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Distances for Data Bubbles

distance( B, C)

dist(B.rep, C.rep)

' . max[B.nnDist(1), C. nnDist(1)]
i -[B.extent+C.extent] :

C B C

;

N
—_——

—
+ [B.nnDist(1)+C.nnDist(1)]

core- and reachability-distance for Data Bubbles
. analog to core and reachability-distance for points

virtual reachability-distance for a Data Bubble
(Average reachability-distance within a Data Bubble)

basically nnDist( MinPts)
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OPTICS on Data Bubbles

Generate Data Bubbles

. Either: Draw a sample of & points, assign each object in
the database to the closest sample point and compute
the Data Bubbles for the resulting & sets

. Or: Use Birch to create a CFtree and generate a Data
Bubble for each leaf node (can be computed from the
information stored in a CF)

Apply OPTICS to the set of obtained Data Bubbles using the
core- and reachability-distance defined for Data Bubbles
Before drawing the reachability-plot for the result on the
Data Bubbles, expand the Data Bubbles by adding the

objects contained in the Data Bubbles using the virtual
reachability
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Evaluation

|~ All1,000,000 Points
1.5} . %

25 EX

200 Sample Points | 200 Data Bubbles

Speed-Up = 150 !
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Data Bubbles for ¢Dimensional Points

(&) LS
rep = center =— X = = fromCF
P n (,Z; ') N

extent = average pairwise distance = ; j
n '(” _1) =1 j=l1

knnDist = expected knr-distance = 6{/5 -extent
assuming uniform n
distribution

Can be computed without much extra cost

. A nn-classification for the final result has to be done anyway
o Sample + nn-classification before the clustering
o Directly from CFs
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Runtime Comparison wrt. Dimension

Runtime for OPTICS on Data Bubbles Speed-up compared to OPTICS on
the whole data set?

time [sec]

6 5 16 1‘5 26 0 5 16 1‘5 2‘0
dimension dimension
Test databases:
* 1 million objects
* 15 randomly generated Gaussian clusters of random sizes
* 1,000 Data Bubbles, using sampling
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Data Bubbles vs. Sampling + nn-Classification

No significant difference in runtime

160
2120
S —a— Data Bubbles
[T
2 80
3
§ 40 —— Sampling + nn-Classification
&

0+ ‘ ‘
0 2000 4000
reduction factor
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Data Bubbles — Discussion

- Benefits
. Data Bubbles scale-up hierarchical clustering, too
. Can be based on Sampling or Clustering Features
. Allows for extremely high reduction factors
» High performance boost
. Can recover even very small clusters
> Small loss in accuracy
. Limitations
. Only for data from Euclidean vector spaces

o for general metric data (example: sequence alignment):
how to generate Data Bubbles, i.e., center (medoids?),
extent, and nnDist efficiently?
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Challenging Data Bubbles

. Corel image collection

. features: first order moments in the HSV color
scheme

. 68,040 feature vectors

. Only two small clusters: 253 and 527 objects

Result of OPTICS
on 1,000 Data Bubbles

Runtime = 20 sec

Result of OPTICS
for the whole data set

Runtime = 4,562 sec

Speed-up =228
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Database Techniques to Improve Runtime
Efficiency — Objective

So far g .
Small data sets [\ _i.
Main memory resident T

Now

Huge amounts of data that do not fit into main memory
Data from secondary storage (e.g., for concurrent use)

o Access to data is very time-consuming when compared to main
memory

Efficient algorithms required
o i.e., runtime should not exceed O(n7log n)

Scalability of clustering algorithms
BIRCH, Data Bubbles, Index-based Sampling, Grid Clustering
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Database Techniques to Improve Runtime
Efficiency — Basic Ideas

Employ spatial index structures or related methods

Index structures build clusters in a preliminary sense
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Index-based Sampling — Method

Proposed by Ester, Kriegel & Xu (1995)

Intuition: Pages of certain index structures have a fixed capacity, i.e.
they can store the same number of points

. Objects in close spatial neighborhood tend to be stored on the - In sparse data space areas: larger regions

same data page in the index

Index structures are efficient ES T an R*-tree
. Very simple heuristics for clustering . Build a spatial index on the data !
(e.g., an R*-tree) '
Fast access methods for different similarity queries . Select representatives from the data |
E.g., range queries or k-nearest neighbor queries pages of the index
- Apply a clustering algorithm to the
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Index-based Sampling — R-Tree structure

R-Tree: Balanced hierarchical decomposition of a multi-
dimensional data space

Multidimensional points

in the data space

I5

..

In dense data space areas : smaller regions
> Representatives from regions are a good

sample of the data distribution as a whole Sample data pages of

set of representatives i o ﬂ .
Transfer the clustering structure to i ;
the entire database
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Index-based Sampling — Transfer Sample
Clustering to Database

How to transfer the sample clustering to the database?

For ~~means or k-medoid algorithm:

Adopt the representatives of the sample clusters for the entire

!Data and directory pages database (centroids, medoids)
in secondary memory (disk)

For density-based algorithms:
Create a representation for each cluster (e.g., MBR = Minimum
Bounding Rectangle)

Assign the objects to the closest cluster

oale, (O QA

For hierarchical algorithms:
[o0 || 0o |[eeo]|[ oo ][ 0o |[00e]|l oo || oo | Hierarchical representations are difficult to generate (dendrogram or
P, P, P, P, P, P, P, P reachability diagram)
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Index-based Sampling —
Selection of Representatives

How many objects to be selected from each data page?
Depends on clustering method
Depends on distribution of data points

Useful heuristics for CLARANS: one object per data page

. Good trade-off between quality of clustering and runtime
efficiency

Which objects should be selected?
Depends on clustering method and data distribution, too.
Simple heuristics: select the ,most central® object from a data
page
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Range Queries for Density-Based Clustering

Basic operation for DBSCAN and OPTICS

Determine the ¢-neighborhood of each object o in the database

Efficient support of e-range queries by using indexing structures
. Spatial index structures: R-tree, X-tree
Metric index structures: M-tree, slim tree

Recall runtime complexity for algorithms DBSCAN and OPTICS

single range query overall algorithm
. without index o(n) 0(n?)
when using index O(log n) O(nlog n)
using direct access o(1) O(n)

high-dimensional data spaces cause problems for spatial indexes

TD
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Index-based Sampling

Experimental comparison for CLARANS

7 (o]
6 )
5 ©
4 )
3 E
2 €
1 3
(4
256 513 1027 2054 4108 256 513 1027 2054 4108
number of representatives number of representatives

Runtime of CLARANS is O(n72) for n database objects

Clustering quality does not increase for more than 1024
representatives

1024 representatives seem to trade-off quality and efficiency well
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GRID Clustering — Approach

Method proposed by Schikuta (1996)
Ingredients
Manage data by a spatial indexing structure (here: grid file)
. Consider data pages of spatial index as cluster candidates
Density of points in a region rof one or more data pages

. t
dens () St

Recursively merge page regions
Use page regions having a high density as cluster seeds

Merge clusters recursively with neighboring page regions that
have a lower density
i.e., density-based clustering
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GRID Clustering — Method

Start with data page having the highest point density as cluster r

Iteratively determine the (directly or indirectly) neighboring data
pages s that have a density less or equal to the density of cluster r

. merge these pages s with cluster r
. recompute the new value of density(r)

If there are only neighboring pages having a higher density than
cluster r, then create a new cluster starting at the page that has
the highest density among the data pages not yet considered

When including the information about the merging order the result
may be visualized as a dendrogram
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Chapter 3: Clustering

Introduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

K-Means

K-Medoid

Choice of parameters: Initialization, Silhouette coefficient
Density-based Methods: DBSCAN
Hierarchical Methods

Density-based hierarchical clustering: OPTICS

Agglomerative Hierarchical Clustering: Single-Link + Variants
Scaling Up Clustering Algorithms

BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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GRID Clustering — Example

2D projections of 3D data:

m3  Dim2:Dim3

3-dimensional data points
Resulting dendrogram

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 3104

Supporting Sets of Similarity-Queries

Compute similarity (self-) join

Many DM algorithms, e.g., density-based clustering, generate large
numbers of similarity queries that have to be processed

. The algorithm generates a whole set of queries in one iteration.
. However, only one is executed at a time

P, Secondary Memory

Ps

yﬂ{% (D W], MW=l [O0
[\
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Potentials for Optimization

. Idea: Process sets of similarity queries simultaneously

Application Query Processor Application Query Processor
single sim. multiple sim.
0;- 0, query Q 1 0;- 0, query (0; 0)) QI
7 7
>
Query result (Q,) | DB Query result (Q)) DB
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Reduction of the I/O cost

Single Similarity Query =0 ||| cache
== H
| _process = |
Qm .. Q [01 Fﬂ l many 1/0 loads | disc

2

Better “caching” strategy: ~ Process a loaded data page immediately for all queries
in the set and store partial results instead of whole pages.

Multiple Similarity Query Q... | partial
results
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Techniques to Improve Efficiency

- Make “better usage” of the cache

> Reduction of I/O loads
> Input/Output operations = disk accesses
> Single random disk access: ca. 8-19 msec.

- Try to avoid distance calculations
> Reduction of CPU cost
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Reduction of the I/O cost — Evaluation

Astronomy DB Image DB

8 1

7 —o— SCAN
m _ g o
;’: 6 &~ X-tree ;3,

(3]

o o
o 3 »
(=] (<]
S 2 o
2 - 2
<1 == <

0 f ’ 0 . : : : t

60 80 100 0 20 40 60 80 100
Number of simultaneous Number of simultaneous
similarity queries (m) similarity queries (m)
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Reduction of the CPU cost (1)

Given

. Set of query objects Q,, ..., @, Q Q”)
(with query ranges) g o0
Database objects A= : .. |
(from “relevant” pages) : :
Basic Procedure 0, 0)

. Compute distances between @,, ..., @,
- Compute distance(P, @) only if it cannot be avoided by
o a previously computed distanca(P, @), j < |
o plus the triangle inequality
Important for complex distance functions
- L, in high-dimensional spaces
. Quadratic Form Dist., Earth Mover's Distance, Edit Distance
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Reduction of the CPU cost (3)

Area of avoidable and not avoidable distance computations

' must be calculated

[*/ can be avoided

Total CPU cost for m queries

m—1)*m . ) )
Cloy = ! *time(distance_calculation)

+triangle _trials * time(triangle _inequality _evaluation)

+not _avoided * time(distance_calculation)
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Reduction of the CPU cost (2)

Avoiding expensive distance calculations

From triangle inequality: dis«(Q, P) + dist(Q,, O,) = dis«(Q,, P)

dist(Q,, P) = dist(Q,, P) — dist(Q,, O;)
~— ~

avoided if ... > QueryRange(Q,)

— = ~
dist(Q, P) > dis{Q,, 0,) — dis{(Q,, P)
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Reduction of the CPU cost — Evaluation

Astronomy DB Image DB
2.0 15 —_—
- —o—SCAN - —o— SCAN
o o
8 151 —G- X-tree © 12+ —B- X-tree
F
S 809+
2 1.0 + 2
o
S S 06+
o o
g 05+ € 05
[ [ .
: | TETeme - £ :
0.0 f f | | 0.0 :
0 20 40 60 80 100 0 20 40 60 80 100
Number of simultaneous Number of simultaneous
similarity queries (m) similarity queries (m)
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Total Query Cost
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Total Query Cost

~—o—— SCAN (Astronomy DB)
——8— X-tree (Astronomy DB)

SCAN (Image DB)

— > =—X-tree (Image DB)

Average total query cost (sec)

Number of multiple similarity queries (m)
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Evaluation of the Combined Effects
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Overall Speed-up w.r.t. the number of servers s

900 600

Image DB Astronomy DB

800 - |—=~Pcomp (SCAN) -

- a- Queries (SCAN) 500 - ——Pcomp (SCAN)
Pcomp (X-tree) -4- Queries (SCAN)

o 600 Queries (X-tree) 400 - Pcomp (X-tree)

Queries (X-tree

700

s
$ 500
2

o
=E 400

Overall speed-up
©
g
S

3
©300+4 e

200

100

8
Number of servers (s) Number of servers (s)

Number of simultaneous queries = number of servers * 100
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Further Improvements

Data Mining Algorithms — 3114

Parallelization: use s servers in a shared nothing
environment to perform queries in parallel
. Data is distributed among s servers
o local parts of the data are stimes smaller
o small communication overhead
o Local answer sets are stimes smaller (on the average)
> increase the number of queries m proportionally
— However, the initialization overhead is O(/772) in the
number of reference points m!
Use pre-computed reference point along the principal axes
instead of the distances between the queries to avoid
distance calculations

. Only a very small number of reference points necessary to
avoid a huge amount of distance calculations
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Introduction to clustering
Expectation Maximization: a statistical approach
Partitioning Methods

K-Means

K-Medoid

Choice of parameters: Initialization, Silhouette coefficient
Density-based Methods: DBSCAN
Hierarchical Methods

Density-based hierarchical clustering: OPTICS

Agglomerative Hierarchical Clustering: Single-Link + Variants
Scaling Up Clustering Algorithms

BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

Incremental Clustering, Generalized DBSCAN, Outlier Detection
Subspace Clustering
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Incremental Clustering

- Motivation: Data Mining in a Data Warehouse

Report
Generator
% % Integrate / Serves OLAP
Load
Data
Operational DB Data Warehouse Mining

Updates are collected and periodically inserted into the Data
Warehouse

all patterns derived from the Data Warehouse have to be updated
- incremental Data Mining algorithms
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Generalized Density-Based Clustering

Motivation: Clustering a set of spatially extended objects
. Example: polygonal data, e.g., from a 2D GIS application
. Preliminary approach: transform polygons to selected points

= poor representation
9 . .
7
v v
Represented by

centers of mass

Take into account the area or other non-spatial attributes
Use “natural” notions of connectedness (e.g. intersects or meets)
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Incremental DBSCAN

In a density-based clustering, only a certain neighborhood of
objects is affected when inserting/deleting some objects

. In general not necessary to re-cluster the whole database

Example: Insertion ® ee
. Only check the ¢ @
affected neighborhood
of an inserted object o

. Only a few range
queries necessary

. Keep track of the * : - :
current clustering

via virtual cluster-ids o e

Noise New Cluster

Extension Merging
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Density-Connected Sets

Basic idea of a density-based cluster :
“g-neighborhood contains at least MinPts points”

°
°©o_o °

“distance < g” . o:., “| Ng | = MinPts”
° oo ° l
s

°
°

NPred(o,p) — MinWeight(N)
reflexive, symmetric | Generalization | oniirary predicate
for pairs of objects for sets of objects
Generalized Neighborhood Generalized Minimum Cardinality
Nypred(0) = {p | NPred(o, p)} MinWeight(Nyp,,,(0))

“NPred-neighborhood has at least MinWeight”

=) Algorithm follows the same schema as DBSCAN
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Examples of Density-Connected Sets

Density-Based Clusters: ® o320 oo

° 0%..#:.
. NPred(o,p). “distance(o,p) < &” v -
. MinWeight(N): card(N)> MinPts L

. NPred(o,p): "o intersects p” .
. MinWeight(N): sum of areas > MinArea . ~ '*-

Simple Forms of Region Growing:
. NPred: “pixels o,p adjacent and of same color” ﬁii

. MinWeight(N): TRUE

Clustering Polygons: % v
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Outlier Discovery: Statistical Approaches

- Assume an underlying model
that generates data set
(e.g. normal distribution)

Probability

/ 5'?\\

. . 2. /. Area 5%
Discordance tests depending on 5\4957 contaencsy /-
- data distribution Data Values

. distribution parameter
(e.g., mean, variance)

. number of expected outliers
Limitations
. most tests are for single attributes only
. In many cases, data distribution may not be known
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Outlier Detection

Hawkins Definition of an Outlier

. An object that deviates so much from the rest of the
data set as to arouse suspicion that it was generated
by a different mechanism

Problem
. Find top n outlier points
. Applications:
. Credit card fraud detection
. Telecom fraud detection
. Customer segmentation
. Medical analysis
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Outlier Discovery: Distance-Based Approach

Introduced to overcome the main limitations imposed
by statistical methods

. Multi-dimensional analysis without knowing data
distribution.

Distance-based outlier: A DB(pct, d_min)-outlier is an
object oin a dataset DB such that at least a fraction pct
of the objects in DB lies at a distance greater than
d_min from o

. Algorithms for mining distance-based outliers
. Index-based algorithm
. Nested-loop algorithm
. Cell-based algorithm
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Outlier Discovery: Local Outlier Factors Chapter 3: Clustering

Introduction to clustering

0y: clear DApct; dmin)-outlier for Expectation Maximization: a statistical approach

. Pct: greater than 99% e : . Partitioning Methods
- dmin: very large R . K-Means
. Not well ured L K-Medoid
0;: Not well capture T Choice of parameters: Initialization, Silhouette coefficient
. either: not an D& pct, dmin)-outlier .  Density-based Methods: DBSCAN
. or: many points in C, are outliers, too! | c, +  Hierarchical Methods

Density-based hierarchical clustering: OPTICS

Agglomerative Hierarchical Clustering: Single-Link + Variants
Scaling Up Clustering Algorithms

BIRCH, Data Bubbles, Index-based Clustering, GRID Clustering
Sets of Similarity Queries (Similarity Join)
Advanced Clustering Topics

Incremental Clustering, Generalized DBSCAN, Outlier Detection

Local outlier factor of points p.
. Basic Idea: Look at the A-nearest
neighbor distance of p relative to the
k-nearest neighbor distances of these

k neighbors of p Subspace Clustering
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Subspace Clustering Subspace Clustering — Motivation

. Problem: selection of a relevant subset of dimensions

for a given clustering task. £8. £g.
[ i i RN i
. Irrelevant dimensions can obscure an otherwise good result LI @ %o
L. L)
o "1 T IC o - il o Imagine a cluster to
Fa - o o ) .
° méaningless cluster 1 a2 I B - be characterized by a
m ﬁngless cluster 2 frue cluster | M M 1D |SUb“sPace’ €9
; ol ; -t D’ »sala
....... .4 . O ue cluster 2 NIEE D= R Ni D ry
: - - -

. . . - 20 25 30 35 40 45 50 55 60 65 70
Too many dimensions reduce the interpretability of a result age
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Subspace Clustering: Major Approaches

Subspace clustering: determine subspaces of the original
space that allow a better clustering than the original points
Fascicles F(k, t): subsets of records that have 4 attributes
such that
. the values in each of the k attributes vary by at most ¢
o range ¢ for numeric attributes
o humber of different values ¢ for categorical attributes
. The number of records in the fascicle exceeds some
threshold
. kis maximal
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Subspace Clustering

Identification of subspaces with clusters
Task: Discover dense base regions
Naive approach
. Compute histograms for all subsets of dimensions
. Inefficient for high dimensional data, i.e. O(2¢) for d dimensions
Greedy algorithm (Bottom-Up)
. Start with empty set of dimensions
. Iteratively include a new dimension
Justification of algorithm: monotonicity of density

. If aregion r is dense in a A~~dimensional space s, then any
projection of rinto a (K —1)-dimensional subspace of sis dense.

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 3130

Subspace Clustering: CLIQUE

CLIQUE [Agrawal, Gehrke, Gunopulos & Raghavan 1998]

Identification of subspaces with clusters
Identification of clusters

Generation of cluster descriptions
Cluster: ,dense region" in the data space

o e

Density threshold
Region ris dense if rcontains more than z points
Grid based approach
Each dimension is partitioned into & intervals
Cluster is union of connected dense regions
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Subspace Clustering — Example

I 2D dense region

I 3D candidate region

- . [ 2D candidate region

[ A

-

Runtime complexity of greedy algorithm: O(E* +n-k)
. for ndata objects and & being the highest number of
dimensions of any dense region

Heuristics to reduce the number of candidate regions
. Principle of ,,minimum description length®
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Subspace Clustering — Generation of Cluster
Descriptions
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Subspace Clustering — Identifying Clusters

Task: find maximal sets of connected dense regions - Problem

Given all dense regions within a single 4-dimensional subspace - Given a cluster, i.e., a set of connected
dense regions

ge

Search space is a graph .
.p q grap . . Desired result: set of hyperrectangles
- Vertices are dense regions that optimally cover the cluster region o -
. Edges are boundaries or dimensions the regions have in AEEEEEN
common . Standard methods? O
Depth first search applicable . Problem is NP hard o
Runtime complexity: . Too inefficient for high dimensions ¢ o
Assume dense regions to reside in main memory (e.g., in a o
hash tree) « Heuristic method -
For each dense region, 24 neighbors have to be checked . Cover the cluster by maximal regions o1 23456780910
-> 2kn accesses to the data structure . Remove redundant regions fl
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Subspace Clustering — Example Subspace Clustering — Experiments
s ° =3
=8 = _ runtime
&2 n runtlmel —— T 20000 T T T T T T 1
<« 20000 |- sec “tups-scale” -o— 18000 -sec "dim-scale" ©—
" 16000 [~ -
~ s 15000 - 14000 - -
— B 12000 |- -
e age § 10000 . 10000 | -
20 30 40 50 60 Ve > 8000 -~ .
— ; 5000 - 6000 |~ -
c \@6'/ 0 R T e o|f mples (xlwool) 4000 = _ ]
3 z~ (o / 100 150 200 250 300 350 400 450 500 2000 |- o "?-Off"“?nﬂﬂns‘
3 ¥ /’/ 0
;ré 29 R 10 20 30 40 50 60 70 80 90 100
vm //, /’/
<+ P / . . . . . .
o 2 « Cf. Runtime complexity of CLIQUE: linear in n, superlinear in d
o~
i
o L]
2

a
0 30 40 50 60
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Subspace Clustering — Discussion (CLIQUE)

automatic detection of subspaces with clusters
automatic detection of clusters at all
no assumptions about the distribution of data

insensitivity to the order of the data

+ + + + +

good scalability wrt. the number n of data objects

— accuracy of result depends on parameter &
— heuristics needed that restricts search on all subsets of dimensions

- Possibly, not all subspaces with clusters are found
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Recent Developments in Subspace Clustering

ENCLUS: based on CLIQUE - Entropy as a density criterion
Advantage: Correlation of dimensions can be evaluated
Limitations: Entropy is computationally complex

MAFIA: based on CLIQUE - adaptive grid of variable size in
different dimensions

Advantage: can be parallelized (pMAFIA)

Limitations: only axis-parallel subspace

RIS (Ranking Interesting Sul:.)slﬁ)aces): no Clustering, searches
and evaluates subspaces which can then be used by ,traditiona
clustering algorithms
. Calculates for any database object o those subspaces for which o is
still a core object
Integrates the dimensionality and, possibly, closeness to the edges
of the data space into the evaluation
Prunes sub- and superspaces which are redundant

I\\
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Recent Developments in Subspace Clustering Recent Developments in Subspace Clustering

PROCLUS - based on CLARANS
. For each of k random medoids, calculate its best dimensions
o correlation with its neighboring points in these dimensions
assign points to their cluster
If clustering is improved, iterate; else the algorithm terminates
Advantage: linear in both the number of objects and dimensions

Limitations: may converge only locally minimum, fixed number of
medoids, only convex clusters, axis-parallel projections only

Monte Carlo Projective Clustering
. Approximates optimal projective cluster

For a set of random points, determine those dimensions where the
distance to a pivot pis less than a threshold o in this dimension

The cluster is the set of points which are in a 2o hyperbox around p
Iterate, keeping clusters of more than MinPts elements

Return only the best subspace cluster

Advantage: good results for highdimensional spaces

Limitations: only axis-parallel clusters

5-Clusters: data coherence: similar, not necessarily identical values
Uses a matrix of objects/attributes
Actions: add/remove object/attribute to/from cluster
In each iteration, determine possible actions for each cluster
o perform action with best improvement over all clusters
Different heuristics used for the ordering of actions
Advantage: general model for coherence search in data

Limitations: computationally complex; only additive or multiplicative
coherence (i.e. no negative or other correlations)

4C: based on DBSCAN and PCA to find coherences in the data
Density is extended to include correlation using local covariance matrices
Algorithm similar to DBSCAN
Advantage: integrates coherence and density

Limitations: dimensionality of the correlation has to be specified, not
hierarchical, only linear dependencies
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Exercise 4) WEKA

d) Normalize the data using the instance
filtering function of WEKA.
What is the normalization method?
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Definition: Norm

- Examples for norms in IR 9 for x = (x,,...,x,) are:

- Lp—Norm:

dist, (u,v) =| D Ju;—v/°

1<i<d

p>1

— p=1, Manhattan norm:

dist, (u,v) = Y|

I<i<d

— p=2, eucledian Norm: HXHZ = 1° = . dist,(u,v) =

p — o, Maximumsnorm: HXHOO — max {‘Xi 1<i< d}

dist , (u,v) = max{\ui -v,

J1<i<d}
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“Unlike classification or prediction, which analyzes data objects with
class labels, clustering analyzes data objects without consulting a
known class label. The class labels are not in the data because they
are not known.”

“Classification can be used for prediction of class labels of data
objects. However, in many applications, prediction of missing or not
known data values rather than class labels is performed to fit data
objects into a schema.”

“Sun Salutation, a ritual performed in the early morning, combines
seven different postures. The sun, the life generator, is invoked by
this Yogic exercise, an easy way to keep fit.”

Stopwords = { a, an, are, be, because, by, can, for, however, in, into, is, keep, many,
not, of, or, rather, than, the, they, this, to, unlike, used, way, which, with, without }

Attributes

analyzes
applications
class
classification
clustering
combines
consulting
data
different
early
easy
exercise
fit
generator
invoked
known
labels

life
missing
morning
objects
performed
postures
prediction
ritual
salutation
schema
seven
sun
values
Yogic

N

=

Text1l Text2 Text3

RPRRRRRR

Log()

0.301
0
0.4771

[=NeNeleloNele ool

Log()

oo oOo0ooo

Log(3)

Len(1)

0.0906
0
0.2276

Len(2) Log(3)

OO0 0000000000000 O0ODO0DO0ODO0DO0ODO0DO0ODO0DO0OO0OO0OO0OOoO

o
o
©
o
o &

0 0
0.7682 0.301



Attributes Log(1) Log(2) Log(3) Len(1) Len(2) Log(3)
analyzes 0.301 0 0 0.0906 0 0
applications 0 0 0 0 0 0
class 0.4771 0.301 0 0.2276 0.0906 0 H _
classification 0 0 0 0 0 0 dISt(X’ y) =1
clustering 0 0 0 0 0 0
combines 0 0 0 0 0 0
consulting 0 0 0 0 0 0
data 0.4771 0.4771 o 0.2276 0.2276 0
different 0 0 0 0 0 0
early 0 0 0 0 0 0
easy 0 0 0 g g g
exercise 0 0 0
- 0 0 0
fit 0 0 0
0 0 0
generator 0 0 0
invoked 0 0 0 0 o0
0.0906 0 0
known 0.301 0 0 0.2276 0.0906 0
labels 0.4771 0.301 o 0 ’ 0 0
life 0 0 0 0 0 0
m|SS|_ng 0 0 0 0 0 0
morning 0 0 0 0.0006 0.0906 0
objects 0.301 0.301 0 0 0 0
performed 0 0 0 0 0 0
postures 0 0 0 0 0.0906 0
prediction 0 0.301 0 0 0 0
ritual 0 0 0 0 0 0
salutation 0 0 0 0 0 0
schema 0 0 0 0 0 0
seven 0 0 0 0 0 0.0906
sun 0 0 0.301 0 0 0
values 0 0 0 0 0 0
Yogic 0 0 0 0.9771 0.7682 0.301
Initial partition: Centroids:
10
9
8
7
6
5 >
4 4
3
2
1 Y—
0
0 1 2 3 4 6 7 8 9 10

(x,y)

-1y

partition after first step:

10

Centroids:



partition after second step: (final)

10
9
8
7
° ¢
5 < >
4 *
3 9
2
1 T Y;
0
0 1 2 3 4 5 6 7 8 9 10

Exercise 3-4) WEKA WEKA: Open File

£ Weka Explorer

Remove the class attribute using the preprocessing dialog.  —
Fiter Sucheni: |23 cata 7 2 rEE
Go to the clustering dialog. e oo D (o
Rebton Mot | yerwengete | o drtorl 2imean e Fope Nre
Clus_tt(ra]r kthg iris dataset using the k-Means Clustering algorithm i @ R e e
Wi =9. Desitop | | segmentestartt

B soyheanarff

- ¥ westher artf

Hand in the result given by WEKA (Cluster mean and standard L e

deviation).

L EEr=Tn

Visualize the cluster mean values and standard deviation for 1 i..l

- sepallength versus sepalwidth ._; g ST [t |

- petallength versus petalwidth 7 ooty frt o les o] (oo ]

g

‘Wizlcome to the Weka Explarer Log w- %0




WEKA: Statistics Exercise 3-4) WEKA

Preprocess | Classify | Cluster | Associste | Select attributes | Yisualize

< Weka Explorer

[ Open file... ] [ Cpen URL... ] [ Open DB... ] [ Undo ] [ Edlit ] [ Save... ]

Inst:I:tc:g “Ir?u Aftributes: S ME::; EI?S;) Distinct: 3 u;:EZ gﬂ(g‘;)ﬁl

e Cluster the iris dataset using the k-Means Clustering
CHNN | S | S ey & algorithm with k=5.
1 :geapr::eng‘th
e Hand in the result given by WEKA (Cluster mean and

Class: class (Nowm) v |[ Wisualize All Standard deviation) .

50 40 50

Visualize the cluster mean values and standard
deviation for
- sepallength versus sepalwidth
- petallength versus petalwidth

Remove ]

Remove selected attributes,

Statuz

oK Log ‘W ®0

WEKA: Clustering | WEKA: Clustering

< Weka Explorer

< Weka Explorer

- - - -
Preprocess | Classify | Cluster | associste | Select attributes | wisualize

Preprocess | classity | Cluster | associate | Select attributes | visusize
Clusterer Clusterer -
[ ] weka | simplekMeans 1 2 5 10
= clusterers ‘
[ # Cobweh Clusterer output Cluster mocle Clusterer output
- (®) Use training set
# FarthestFirst
# MakeDensityBasedCiusterer O Suppliec test set < weka.gui.GenericObjectEditor,
# SimpleKMesns

O percentage splt weka clusterers SimplekMeans

() Classes to clusters evaluatid ~About

Cluster data using the k means algorithm

Stare clusters for visualizati

numClusters % |
Igrore: attri

seed | 10 |
[ Start

Result list (right-click for options)

Status

Status




WEKA: Clustering Exercise 3-4) WEKA

Preprocess | Classify | Cluster | Associste | Select attributes | Visualize

Weka Explorer

Clusterer

SimpleKMeans -1 5 -3 10

Cluster moce Clusterer output
@ Use training set Cluster 0 A

Mean,/Mode: 6.0296 2.7556 4.9444 1.7037
Htd Deva: 0.2653 0.243% 0.362 0.2534
(O Percentage spit Cluster 1

Mean/Mode: 5.55 2.5808 3.9269 1.2
Std Dews: 0.3558 0.253 0.3811 0.1673

) Supplied test set

() Classes to clusters evaluation

<4
<4
Cluster 2
[¥] Store clusters for visualization Hean/Mode: 6.9667 3.137 5.8852 2.2 «
5td Devs: 0.5137 0.2937 0.4755 0.1941
Cluster 3
Mean/Mode: 5.006 3.41% 1.464 0.244 «
Start Std Deva: 0.3525 0.361 0.1735 0.1072
Cluster 4
Mean/Mode: 6.55 3.05 4.805 1.55 ?
5td Devs: 0.2947 0.1573 0.42439 0.214

[ lgnore attributes

Result list (right-click for options)

Clustered Instances

o @i Visualize the cluster mean values and standard deviation for
5 .
e e ie) - sepallength versus sepalwidth
3 50 [ 33%) ” h | d h
4 20 ( 13%) v - petallength versus petalwidt
< >
Status
OK
. Weka Clusterer, .
N
l l S e rI I I g % sepallength (Num) « o || sepatwicth (hum) ? v
.
Colour: Cluster (Nom) v ||select Instance v
Weka Explorer. @@ ey Il o diter |
Preprocess | Classify | Cluster | Associste | Select attributes | Visualize Plat: iris-weka filters unsupervised attribute Remove-RS_clustered
Clusterer R
SimplekMeans 115 510 R ]
v IR
Cluster mode Clusterer output e, ]
TN
@) Use training set Cluster 0 ad
e, Mean/Mode: 6.0296 2.7556 4.9444 1.7037
Htd Deva: 0.2653 0.243% 0.362 0.2534
) Percertage spit Cluster 1
) Classes to clusters avalustion Mean/Mode: 5.55  2.5808 3.9269 1.2
Std Devs:  0.3558 0.253 0.3811 0.1673 Pr—
uster
Cluster 2 Mean/Mode: 6.0296 2.7556 4.9444 1.7037
[¥] Store clusters for visualization Mean/Mode: 6.9667 3.137 S5.8852 2.2 std Devs:  0.2853 0.2439 0.362 0.2534
std Devs:  0.5137 0.2937 0.4785 0.1341 Cluster 1
p Hean/Mode: 5.55  2.5808 3.5269 1.2
[ lgnore sttributes Cluster 3 .
Mean/Mode: 5.006 3.415 L.464 0.244 Cluprap S DTS -3559 0.253 03811 01673
uster
Start Std Devs:  0.3525 0.381 0.1735 0.1072 Mean/Mode: 6.9667 3.137 5.8852 2.2
R ) Cluster 4 Std Devs:  0.5137 0.2837 0.4785 0.1941
B (2 B LRy GRS Mean/Mode: 6.55  3.05  4.805 .55 Cluster 3
Srd Dews:  0.2947 0.1573 0.4249 0.214 Mean/Mode:  5.006 3.418 1.454 0.244
Std Devs:  0.3525 0.381 (0.1735 0.1072
View in separate window Cluster 4
S It bt tered Tnstances Mean/Mode: 6.55  3.05 4,805 1.55
ave result burter Std Dews:  0.2047 0.1573 0.4243 0.214
Load model 27 | 18%)
Save model 26 [ 17%)
7 b1
" " 50 [ 33%)
Wisualize cluster assignments
20 { 13%) v
= v
Class colour
Status
e clussero clusserl




£ Weka Clusterer Visualize: 15:14:51 - SimpleKMeans (iris-weka. filters. unsupervised.attribute.Remove-R5)

i: petallength (Hurr)
(Colour: Cluster (Nor) v | Selectinstance v
Clear [ Save wor ]
Plot: iis-weka fiters Unsupervised sttrioute Remove-RS_chistered
« ISR
VIR T
Cluster 0
Mean/Mode: 6.0298 2.7556 4.9444 1.7037
3td Devs: 0.2853 0.2439 0.362 0.2534
Cluster 1
Mean/Mode: 5.55 2.5805 3.92639 1.2
3td Dewvs: 0.3558 0.253 0.3811 0.1673

Cluster 2

MeansMode: 6.8667 3.137 5.8852 2.2

Std Devs: 0.5137 0.2937 0.4785 0.1941
Cluster 3

Mean/Mode: 5.006 3.418 1.464 0.:244

Std Devs: 0.3525 0.381 0.1735 0.1072
Cluster 4

Mean/Mode: 6.55 3.05 4,805 1.55
Std Devs: 0.2947 0.1573 0.4249 0.214

Class colour

eluster) elusterl

Data File

% Data points for data mining tutorial

% Exercise: Cluster the data file with k-mean
% clustering using k=2 and k=3 clusfrrs. .
nominal attribute

@relation data-points /

@attribute class {one, two} numerlc attrlbute
@attribute x numeric /

@attribute y numeric

@data
% 10 instances
one,3,8
one,3,6
one,3,4
one,4,7
two,4,5
two,5,1
two,5,5
two,8,4
two,9,1
two,9,5

=
(=]

>

O P N W A OO N 0 ©

<)
=
N

3 4 5 6 7 8 9 10

Exercise 3.4 ¢c) WEKA

« Create an “arff’-file containing the
datapoints from exercise 3.

e Cluster the data file using WEKA with
k=2 and k=3 clusters.

e Hand in the result given by WEKA
(Cluster mean and standard deviation).

i Weka Explorer

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize

[ Open file... ] [ Open URL.. ] [ Open DB... ] [ Uncia ] [ Ecit... ] [ Save... ]
Fitter
Current relation Selected attribute
Relation: data-points Mame: class Type: Morminal
Instances: 10 Aftributes: 3 Missing: 0 (0% Distinct: 2 Unigue: 0 (0%
Attributes Lakel Court
ong 4 |
Al ] [ None ] [ Invert twa B |

Class: v w Wisualize All

Remowe
Remove selected attributes.

Status
Ok




Clusterer

SimplekMeans -t 25 10
Cluster mode

(®) Use training set

O Supplied test set

O Percentage spii

O Classes to clusters evelugtion

Store clusters for visualization

[ \gnore atributes

Start

Result list (right-click for options)

111908 - Simplekheans

Status

Clusterer output

schene: weka. clusterers. SinpleKileans -N 2 -5 10 3
Relation: data-points-veka. filters.unsupervised. attribute.Remove-R1
Instances: 10
Attributes: Z

x

¥
Test mode:  evaluate on training data

kleans

Muwber of iterations: 4

Within cluster

Cluster centroids:

Cluster 0

Mean/Mode: 3.6667 5.8333
Std Dews: 0.8165 1.472

Cluster 1

Mean/Mode: 7.75 2.75
Std Dews: 1.893 2.0616

Clustered Instances

Hodel and evaluation on training set =

Weka Explorer @

Preprocess | Classify | Cluster | associate | Select attributes | Visuslize

sum of squared errors: 0.8724362207105065

[Glick Teft mowse button while holding <alt> and <shift> to display 5 save dislog.

OK

10

Cluster centroids:

Cluster 0
Mean/Mode:
dtd Dewa:

Cluster 1
Mean/Mode:
4td Dewa:

Clustered Instances

3 o ©
o o
2 o0, S
S o
@ O
° o% -
1
Q © ° o] . & k=] el
>ql o o g o
S & o Y oG
0 08 & &
O@) T 45 © 2o
=} o
08 o -
2 0 K o oo
o Ogo o
o
3
2 1 0 1 2 3 )

Original Points

ICDM: Top Ten Data Mining Algorithms

K-means

o

o o
2 %
2 % o& o s
Oge ©
-3
-2 -1 [} 1 2 3 4 5 B

K-means (3 Clusters)

December, 2006 8

Click left mouse butkon wl

3.6667 5.8333
0.6165 1.472

7.758 2.75
1.893 2.0616
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Chapter 4: Classification
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Introduction: Classification Problem

Given
a d-dimensional data space D with attributes g, /=1, ..., d
aset C={q, ..., ¢ of kdistinct class labels ¢; j=1, ..., k
a set Oc Dof objects, o = (o, ..., 0,), with known class labels from C
Searched
class label for objects from D - G, i.e. for objects with unknown class
a classifier K: D— C
Demarcation from clustering
Classification: classes are known in advance (a priori)
Clustering: classes are determined
Related problem: prediction
Determine the value of a numerical attribute
Method: e.g., regression analysis

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 4002

Chapter 4: Classification

Introduction
Classification problem, evaluation of classifiers
Bayesian Classifiers
Optimal Bayes classifier, naive Bayes classifier, applications
Nearest Neighbor Classifier
Basic notions, choice of parameters, applications
Decision Tree Classifiers
Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 4004

Introduction: Example

ID age car type

1 23] family

2 17 | sportive

3 43|sportive

4 68| family low

5 32| truck low
Simple Classifier
if age > 50 then risk = |ow
if age <50 and car type = truck then risk = | ow

if age < 50 and car type # truck then risk = high.
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Classification Process:
Model Construction (= training phase)

Classification
algorithm

- /
raining
data 1

NAME |RANK YEARS | TENURED .

Mike  |Assistant Prof 3 no Classifier

Mary  |Assistant Prof 7 yes \

Bill Professor 2 yes

Jim Associate Prof 7 yes if rank = ‘professor’

Dave |Assistant Prof 6 no or years > 6

Anne |Associate Prof 3 no then tenured = ‘yes’
RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 4007

Evaluation of Classifiers — Accuracy

Classification Accuracy

. Predict the class label for each object from a
data set o (= test set)

. Determine the fraction of correctly predicted
class labels:

count(correctly predicted class label)

classification accuracy =
count (o)

. Classification error = 1 — classification accuracy

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 4006

Classification Process:
Application of the Model (test phase,
application phase)

——— <
=
/ \

(Jeff, Professor, 4)

Tenured? l

yes

Goal is sometimes not to classify unknown data
but to get a better understanding of the data
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Evaluation of Classifiers — Notions

Overfitting

. Classifier is optimized to training data

. May yield worse results for entire data set

. Potential reasons
o bad quality of training data (noise, missing values, wrong values)
o different statistical characteristics of training data and test data

Train-and-Test
Decomposition of data set o into two partitions
Training data to train the classifier
o construction of the model by using information about the class labels
Test data to evaluate the classifier

» temporarily hide class labels, predict them anew and compare results
with original class labels
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Evaluation of Classifiers — Evaluation of Classifiers —
Cross Validation Leave-One-Out
.- Train-and-Test is not applicable if the set of objects for . If data set is very small

which the class label is known is very small . Leave-one-outis, in some sense, a degenerate variant of

cross validation
m-fold Cross Validation . For each of the objects oin the data set D
. Decompose data set evenly into m subsets of (nearly) o Use set D— oas training set
the same size. o Use the singleton set {o} as test set

. Iteratively use m— 1 partitions as training data and the = Predict the class label of object o
remaining sing|e partition as test data. . Compute classification accuracy by dIVIdIng the number

. Combine the m classification accuracy values to an of correct predictions through the database size |D|

overall classification accuracy, and combine the m

generated models to an overall model for the data. - Particularly well applicable to nearest-neighbor classifiers
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Quality Measures for Classifiers Quality Measures for Classifiers

Let K'be a classifier, 7TR< O a training set, and 7Ec O

Classification accuracy
a test set. Let C(0) denote the correct class label of an

Compactness of the model

. decision tree size; number of decision rules ObJeCt oe 0.
Interpretability of the model - Classification Accuracy of Kon TE:

. Insights and understanding provided by the model |{oeTE,K(0)=C(0)}|
Efficiency G (K)= | TE |

. T!me to generate the model (tral.nlng .tlme) . True dassification error

. Time to apply the model (prediction time)
Scalability for large databases F(K) = |[{oeTE,K(0) # C(0)} |

. Efficiency in disk-resident databases TE | TE |
Robustness - Apparent classification error

. Robust against noise or missing values |{o e TR,K(0) # C(0)} |

FTR(K): |TR|
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What Is Prediction?

Data Mining Algorithms — 4013

Prediction is similar to classification
. First, construct a model
. Second, use model to predict unknown value
o Major method for prediction is regression

- Linear and multiple regression

- Non-linear regression
Prediction is different from classification
. Classification refers to predict categorical class label
. Prediction models continuous-valued functions

Data Mining Algorithms — 4015

ysis and Log-Linear Models

RWTH Aachen, Informatik 9, Prif. Seid_l

Regress Ana
in Prediction

Linear regression.: Y=o + B X

. Two parameters, o and JS specify the line and are to be
estimated by using the data at hand.

. using the least squares criterion to the known values of V;,
Multiple regression: Y= by + by X, + b, X,

. Many nonlinear functions can be transformed into the
above.

Log-linear models:

. The multi-way table of joint probabilities is approximated
by a product of lower-order tables.

. Predict values of cells in a cube by using margin values.
. Applicable to categorial data only.
- Probability: p(a, b, ¢ d) = azp Pac Xad Opca

RWTH Aachen, Informatik 9, Prof. Seidl

Predictive Modeling in Databases

Data Mining Algorithms — 4014

Predictive modeling: Predict data values or construct
generalized linear models based on the database data.

. Predict value ranges or category distributions

. Predict individual values (by regression techniques)
Method outline:

. Minimal generalization

. Attribute relevance analysis

. Generalized linear model construction

. Prediction

Determine the major factors which influence the prediction

. Data relevance analysis: uncertainty measurement,
entropy analysis, expert judgement, etc.

Multi-level prediction: drill-down and roll-up analysis

RWTH Aachen, Informatik 9, Prof. Seidl

Chapter 4: Classification

Data Mining Algorithms — 4016

Introduction

. Classification problem, evaluation of classifiers

Bayesian Classifiers

. Optimal Bayes classifier, naive Bayes classifier, applications
Nearest Neighbor Classifier

. Basic notions, choice of parameters, applications
Decision Tree Classifiers

. Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines
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Bayesian Classification: Why?

Probabilistic learning

. Calculate explicit probabilities for hypothesis, among the most
practical approaches to certain types of learning problems

Incremental

Each training example can incrementally increase/decrease the
probability that a hypothesis is correct. Prior knowledge can be
combined with observed data.

Probabilistic prediction
Predict multiple hypotheses, weighted by their probabilities
Standard

Even when Bayesian methods are computationally intractable, they
can provide a standard of optimal decision making against which
other methods can be measured
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Optimal Bayes Classifier (1)

Let H={h,, ... h} a set of independent hypotheses
Let o be a query object to be classified

The optimal Bayes classifier assigns the following class label to object
o:

argmax< > P(c,| k) P(h; | o)
c;eC heH

See example from above: object ois assigned to class negative

Optimal Bayes classifier

. Among the classifiers using the same a-priori knowledge, there is
no classifier that yields a better classification accuracy.
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Bayes Classifiers — Motivation

Given
. an object o and two class labels, positive and negative
. three independent hypotheses A,, /, /4
. the a-posteriori probabilities of the hypotheses for a given o:

o P(h | 0)=0.4
o P(h,|0)=0.3
o P(hy|0)=0.3
. the a-posteriori probabilities of the classes for a given
hypothesis:

o P(negative | h)) = 0, P(positive | h) = 1
o P(negative | h,) = 1, P(positive | h,) =0
o P(negative | hy) = 1, P(positive | h;) = 0
Result: Object o belongs
. to class positive with a probability of 0.4
. to class negative with a probability of 0.6
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Optimal Bayes Classifier (2)
Bayes rule: p(cj |0)~ plo)= p(o | cj)~ p(cj)

The assumption that in any case, exactly one of the hypothesis A,
holds leads to a simplified decision rule:

arg max{p(cj | 0)}

c/-eC

Since, typically, the values of P(¢; | 0) are not known, the rule is
transformed by using Bayes ~ theorem:

p(O | C,-)'P(C,-)}

oy [ aemax{plole)- ple)]

c;eC

arg max{p(c‘ i 0)} =arg max{

c;eC c;eC

Final decision rule for the optimal Bayes classifier (called Maximum
Likelihood classifier)

C,,. =arg max{P(o | cj)-P(cj)}

cjeC
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Naive Bayes Classifier (1)

Estimate the values of p(c) by using the observed
frequency of the individual class labels ¢;

How to estimate the values of p(o | ¢)?
Assumptions of the naive Bayes classifier
. Objects are given as d¢-dim. vectors, o= (¢, ..., 0,)

- For any given class ¢; the attribute values o;are
conditionally independent, i.e.

d
p(0,...,0, | Cj) = Hp(oi | Cj)
i=1
Decision rule for the naive Bayes classifier

argmaX{P(cj) T1r(| C,-)}

c;eC i=1
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Bayesian Classifier

Assuming dimensions of o =(0,...0,) are not independent
Assume multivariate normal distribution (=Gaussian)
1 0] 01T

a1z, 1%

J

Po|C,)=

with
; mean vector of class C;

N, is number of objects of class C v+
¥ . is the d x d covariance matrix

N/ oy i
3, =2 (0 -u)elo— 1) e e
i=1 (outer product)

| X, |is the determinant of X, and Z‘j'l is the inverse of X,
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Naive Bayesian Classifier (2)

d
Independency assumption: p(o,...,0, | Cj) = Hp(oi | Cj)
i=1

p(0;|C) is estimated as the relative frequency
of samples having value x; as i-th attribute

If i-th attribute is categorical: p(o| CJ-)‘
in class C '

Dnalls

f(Xi) Xi

If i-th attribute is continuous:
p(0,|C) is estimated through e.g.: p(o|C)
. Gaussian density function )
determine (“i,j IGi,j) l[oi —Hi T I

> p(o,|C)) =m€

Computationally easy in both cases
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Example:
Interpretation of Raster Images

Scenario: automated interpretation of raster images
. Take dimages from a certain region (d frequency bands)
Represent each pixel by dgray values: (o, ..., 0,)

Basic assumption: different surface properties of the earth
(,Jlanduse™) follow a characteristic reflection and emission pattern

(12),(17.5)

. Jwater

o
oo e of
o o o
(8.5),(18.7) Iil
18.0 20.0 _22.0
165 Band 2

Surface of earth Feature space
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Interpretation of Raster Images

Application of the optimal Bayes classifier

. Estimation of the p(o | ¢) without assumption of conditional
independence

. Assumption of d-dimensional normal (= Gaussian) distributions
for the gray value vectors of a class

%‘

deC|5| n regions

Probability p of
class membership
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Example: Classification of Text

Applications [Craven et al. 1999], [Chakrabarti, Dom & Indyk 1998]
. email filtering (spam, categories)
. classification of web sites
Vocabulary 7= {¢, ..., t;} of relevant terms
Representation of a text document o = (¢, ..., 0,)

. o;indicates the frequency how often term t occurs in
document o

Method

. Selection of relevant terms

. Computation of term frequencies
. Classification of new documents
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Interpretation of Raster Images

Method: Estimate the following measures from training data
u;- d-dimensional mean vector of all feature vectors of class ¢
¥ dx d Covariance matrix of class ¢

Problems with the decision rule
. if likelihood of respective class is very low
. if several classes share the same likelihood

AN __?,__ ——--N__— threshold
\ \/ ————x
unclassified regions
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Classifying Text: Selection of Terms

Reduction of occurring terms to basic
representatives

. Stemming

. Depending on the language of the texts
- Single-word of multi-word terms?
- Elimination of stop words (and, or, is, ...)
- Further reduction of the number of terms
- Still up to 100,000 terms to handle
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Classifying Text: Reduction of the Number of
Terms

- Optimal approach
. There are ((2NumberOfierms) many subsets of terms
Optimal subset cannot be determined efficiently

. Greedy approach
. Evaluate the separatability of each term individually
. Descendingly sort the terms according to that measure
Choose the first dterms as attributes
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Classifying Text: Classification of New
Documents (2)

Probability that coin shows face ¢
. f(¢, ¢) is the relative frequency of term ¢ in class ¢
Potential problem

o Term {;does not occur in any training document of class ¢

o Term £ occurs in a document o to be classified

o Within that document ¢, other important (characteristic)
terms of class ¢; occur

- Goal: avoid P(o;| ¢) = 0
- Smoothing of relative frequencies
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Classifying Text: Classification of New
Documents (1)

Application of the naive Bayes classifier

Problem: frequencies of the different terms are not
independent from each other but are, typically, correlated

Important task:

Estimate the conditional probabilities p(o; | ¢;) from the
training documents

Consider the generation of a document o from class ¢ which has n
terms by a Bernoulli experiment

. Assume a coin that has a face for each of mterms ¢
. Throw this m-sided coin ntimes
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Classifying Text: Experiments

Experimental setup [Craven et al. 1999]
Training set: 4,127 web pages of computer science dept's

Classes: department, faculty, staff, student, research project, course,
other

4-fold cross validation: Three universities for training, fourth university
for test

Summary of results
Classification accuracies of 70% to 80% for most classes
Classification accuracy of 9% for class staff but 80% correct in
superclass person

Poor classification accuracy for class other due to high variance of the
documents in that class
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Bayesian Classifiers — Discussion

+ Optimality

- golden standard for comparison with competing classifiers
+ High classification accuracy for many applications
+ Incremental computation

- classifier can be adopted to new training objects

(store count, sum, square-sum to derive mean, variance etc.)
+ Incorporation of expert knowledge about the application

— Limited applicability

- often, required conditional probabilities are not available
— Lack of efficient computation

- in case of a high number of attributes

- particularly for Bayesian belief networks
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Chapter 4: Classification

Introduction

Classification problem, evaluation of classifiers
Bayesian Classifiers

Optimal Bayes classifier, naive Bayes classifier, applications
Nearest Neighbor Classifier

Basic notions, choice of parameters, applications

Decision Tree Classifiers

Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines
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The independence hypothesis...

... makes computation possible
... yields optimal classifiers when satisfied

... but is seldom satisfied in practice, as attributes
(variables) are often correlated.

Attempts to overcome this limitation:
Bayesian networks, that combine Bayesian reasoning
with causal relationships between attributes

Decision trees, that reason on one attribute at the
time, considering most important attributes first
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Supervised vs. Unsupervised Learning

Supervised learning (classification)

. Supervision: The training data (observations,
measurements, etc.) are accompanied by labels
indicating the class of the observations

New data is classified based on the training set
Unsupervised learning (clustering)
. The class labels of training data is unknown

. Given a set of measurements, observations, etc. with
the aim of establishing the existence of classes or
clusters in the data
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Instance-Based Methods
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Instance-based learning:

. Store training examples and delay the processing (“lazy
evaluation”) until a new instance must be classified

Typical approaches
. k+earest neighbor approach

o Instances represented as points in a Euclidean
space or, more general, as points in a metric space.
. Locally weighted regression

o Constructs local approximation
. Case-based reasoning

o Uses symbolic representations and knowledge-based
inference
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Nearest Neighbor Classifiers: Example

Variant 1 Variant 2
use /mean values yi; use individual objects

dpg
T dog dog

. Classifier decides that query object gis a dog
. Instance-based learning

. Related to case-based reasoning
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Nearest Neighbor Classifiers
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Motivation: Problems with Bayes classifiers

. Assumption of normal (Gaussian) distribution of the

vectors of a class requires the estimation of the
parameters y;and X;

. Estimation of u; requires si?nificantly less training
data than the estimation of X;

Objective

. Classifier that requires no more information than
mean values p;of each class c,

. Or even less than mean values but only the training
points

- Nearest neighbor classifier
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Nearest Neighbor Classifiers: Basics

Fundamental procedure

. Use attribute vectors o = (o,, ..., 0,) as training objects
. Variant 1:

o Determine mean vector y, for each class ¢
(in training phase)
o Assign query object to the class ¢; of the nearest h

mean vector p;

Variant 1
. Variant 2:
o Assign query object to the class ¢;of the closest g
training object i
dog dog"f
- Generalizations: Variant 2

o Use more than one representative per class (Var. 1)
» Consider k> 1 neighbors for the class assignment decision (Var. 2)
o Use weights for the classes of the & nearest neighbors
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Nearest Neighbor Classifiers: Notions

Distance function
Defines the (dis-)similarity for pairs of objects

Number 4 of neighbors to be considered

Decision set
Set of k nearest neighboring objects to be used in the decision
rule

Decision rule

Given the class labels of the objects from the decision set, how
to determine the class label to be assigned to the query object?
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Nearest Neighbor Classifiers: Parameters

Problem of choosing an appropriate value for parameter &
ktoo small: high sensitivity against outliers
ktoo large: decision set contains many objects from other

classes
Empirically, 1 << k& < 10 yields a high classification accuracy in
many cases
SR O decision set for k=1
;e e
/ [ ) \\ o P — \\
( @ o) oo ¢ () decision set for k=7
\ ° LA ' \\,/
\ ° / °
~ ~— 7 o . """"""""""""""
el . decision set for k=17
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Nearest Neighbor Classifiers: Example

+ Classes + and -
+
/,7—\\ +
A . . _
[ ,@7 L o (O decision set for & = 1
\\ /I ’_.\ B
- S=7_ -7 () decision set for k=5
N_7

Using unit weights (i.e., no weights) for the decision set
Simply called “majority criterion”
rule £ = 1 yields class ,+", rule k= 5 yields class ,—"

Using the reciprocal square of the distances as weights
Both rules, k= 1 and k=5, yield class ,+"

Using a-priori probability (=frequency) of classes as weights
Both rules, k=1 and k=5, yield class ,+"
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Nearest Neighbor Classifiers: Decision Rules

Standard rule

Choose majority class in the decision set, i.e. the class with the
most representatives in the decision set

Weighted decision rules
Use weights for the classes in the decision set
o Use distance to the query object: 1/d(o,qg)?

o Use frequency of classes in the training set, i.e. the a-priori probability
of the class

Example
Class a: 95%, class b: 5%
Decision set = {a, a, a, a, b, b, b}
Standard rule yields class a
Weighted rule yields class b
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NN Classifiers: Index Support

Assume a balanced indexing structure to be given
Examples: R-tree, X-tree, M-tree, ...

Nearest Neighbor Search

. Query point g
Partition list
o Minimum bounding rectangles (MBRs) for which the corresponding
subtrees have still to be processed

NN: nearest neighbor of gin the data pages read up to now

q
MBRAY " Minbist(aq) ~> — MinDist(B,a)
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NN Classifiers: Index Support with R-Trees (2)

Q

Start with root node

Update “partition list” (sorted by mindist) with nodes, that still need to be visited (prune
nodes, that have larger mindist than distance from q to NN candidate)

Visit next node in “partition list” (lowest mindist)

When visiting leaf node: update possible NN candidate (if any point in node is closer than
previously found NN candidate)

This is a “best first search” algorithm which runs in between O(log n) and O(n)
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NN Classifiers: Index Support with R-Trees

T

o d
o

miminiyynin

|00000 | |000000| |0000 | |00l700 | |000000| IOOOOO I |000000|

properties of the R-Tree
leaf nodes contain data points, inner nodes contain MBRs (Minimum
Bounding Rectangles) and pointers
all leaves have the same distance (= path length) to the root node
each node contains at most M entries
each node (exception: root node) contains at least m (< M/2)
entries
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Example: Classification of Stars

- Analysis of astronomical data

I:> Removal of noise

Image segmentation
Manual analysis Automatic ﬂ
of interesting <:| Classification <:| Feature extraction

star types of star type

. Classification of star types with a NN classifier
- Use the Hipparcos catalogue as training set
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Classification of Stars: Training Data

Use Hipparcos Catalogue [ESA 1998] to ,train" the classifier

Contains around 118,000 stars
78 attributes (brightness, distance from earth, color spectrum, ...)
Class label attribute: spectral type (= attribute H76)

Examples
o H76: GO ANY
o H76: G7.2 T
» H76: KIII/IV G K
/T
Values of the spectral type are vague Gy G; G,
Hierarchy of classes
Use the first level of the class hierarchy
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Classification of Stars: Experiments

Experimental Evaluation [Poschenrieder 1998]

Distance function
using 6 attributes (color, brightness, distance from earth)
using 5 attributes (color, brightness)
Result: best classification accuracy obtained for 6 attributes

Number & of neighbors
Result: best classification accuracy obtained for & = 15

Decision Rule
weighted by distance
weighted by class frequency

Result: best classification accuracy obtained by using distance-based
weights but not by using frequency-based weights
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Classification of Stars: Training Data

Distribution of classes in Hipparcos Catalogue

Class #Instances fraction of instances
K 32,036 27.0 )
F 25,607 21.7
G 22,701 193 L frequent classes
A 18,704 15.8
B 10,421 8.8
M 4,862 41
0 265 0.22 )
C 165 0.14
R 89 0.07
w 75 0.06 ~ rare classes
N 63 0.05
S 25 0.02
D 27 0.02 _J
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Classification of Stars: Experiments

class incorrectly correctly classification
classified classified accuracy

K 408 2338 85.1%

F 350 2110 85.8%

G 784 1405 64.2%

A 312 975 75.8%

B 308 241 43.9%

M 88 349 79.9%

C 4 5 55.6%

R 5 0 0%

W 4 0 0%

o} 9 0 0%

N 4 1 20%

D 3 0 0%

S 1 0 0%

Total 2461 7529 75.3%

High accuracy for frequent classes, poor accuracy for rare classes
Most of the rare classes have less than «/ 2 = 8 instances
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NN Classification: Discussion

+ 4+ + + 4+
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applicability: training data required only

high classification accuracy in many applications

easy incremental adaptation to new training objects
useful also for prediction

robust to noisy data by averaging A-nearest neighbors

naive implementation is inefficient
requires k-nearest neighbor query processing
support by database techniques may help to reduce from O(n) to
O(log n) for n training objects
does not produce explicit knowledge about classes
But provides some explanation information

Curse of dimensionality: distance between neighbors could be
dominated by irrelevant attributes

To overcome it, stretch axes or eliminate least relevant attributes
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Chapter 4: Classification

Introduction
Classification problem, evaluation of classifiers
Bayesian Classifiers
Optimal Bayes classifier, naive Bayes classifier, applications
Nearest Neighbor Classifier
Basic notions, choice of parameters, applications
Decision Tree Classifiers
Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines
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Remarks on Lazy vs. Eager Learning

RWTH Aachen, Informatik 9, Prof. Seidl

Decision Tree Classifiers: Motivation

Data Mining Algorithms — 4054

Instance-based learning: lazy evaluation
Decision-tree and Bayesian classification: eager evaluation
Key differences

Lazy method may consider query instance xg when deciding
how to generalize beyond the training data D

Eager method cannot since they have already chosen global
approximation when seeing the query

Efficiency
Lazy - less time training but more time predicting
Accuracy

Lazy method effectively uses a richer hypothesis space since it
uses many local linear functions to form its implicit global
approximation to the target function

Eager: must commit to a single hypothesis that covers the
entire instance space
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ID age car type risk

1 23 family = truck # truck

2 17 sportive

3 43 sportive risk = low

4 68 family low <60
5 32 truck low o

risk = low risk = high

Decision trees represent explicit knowledge
Decision trees are intuitive to most users
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Decision Tree Classifiers: Basics
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Decision tree
A flow-chart-like tree structure
Internal node denotes a test on an attribute
Branch represents an outcome of the test
Leaf nodes represent class labels or class distribution
Decision tree generation consists of two phases
Tree construction
o At start, all the training examples are at the root
o Partition examples recursively based on selected attributes
Tree pruning
o Identify and remove branches that reflect noise or outliers
Use of decision tree: Classifying an unknown sample

Traverse the tree and test the attribute values of the sample against the
decision tree

Assign the class label of the respective leaf to the query object
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Decision Tree Classifiers:
Training Data for ,playing_tennis"
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- Query: How about playing tennis today?
- Training data set:

day [forecast temperature humidity wind tennis decision

1[sunny hot high weak no
2|sunny hot high strong no
3|overcast hot high weak yes
4|rainy mild high weak yes
5|rainy cool normal weak yes
6|rainy cool normal strong no
7

@W-«A? Y Ueanal Loeatn Y&
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Algorithm for Decision Tree Induction

Basic algorithm (a greedy algorithm)

Tree is created in a top-down recursive divide-and-conquer manner
Attributes may be categorical or continuous-valued
At start, all the training examples are assigned to the root node

Recursively partition the examples at each node and push them
down to the new nodes
o Select test attributes and determine split points or split sets for the
respective values on the basis of a heuristic or statistical measure
(split strategy, e.g., information gain)

. Conditions for stopping partitioning
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All samples for a given node belong to the same class

There are no remaining attributes for further partitioning —
majority voting is employed for classifying the leaf

There are no samples left
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Decision Tree Classifiers:
A Decision Tree for ,playing_tennis"

high normal

~NO"




RWTH Aachen, Informatik 9, Prof. Seidl ining Algarithms — 4061

Example: Training Dataset fo

This
follows
an
example
from
Quinlan’s
ID3
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Split Strategies: Types of Splits

Categorical attributes
. split criteria based on equality ,attribute = a" or
. based on subset relationships ,attribute < set"
. many possible choices (subsets)

Oattribute Oattribute attribute
00 0 O

Numerical attributes
. split criteria of the form ,attribute < a"
. many possible choices for the split point
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Output: A Decision Tree for “buys_computer”

2 RN
=30 [31.40 |  >40
/

- - credit rating?
RN /N
no

yes excellent fair

no ﬁ o [yes
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Split Strategies: Quality of Splits

Given
. aset 7of training objects
. a (disjoint, complete) partitioning 73, 75, ..., T, 0f T
. the relative frequencies p; of class ¢;in T

Searched

. a measure for the heterogeneity of a set S of training objects
with respect to the class membership

. asplit of Tinto partitions 7, 75, ..., 7,,such that the
heterogeneity is minimized

Proposals: Information gain, Gini index
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Split Strategies: Attribute Selection Measures

Information gain (ID3/C4.5)

. All attributes are assumed to be categorical

. Can be modified for continuous-valued attributes
Gini index (IBM IntelligentMiner)

. All attributes are assumed continuous-valued

. Assume there exist several possible split values for
each attribute

May need other tools, such as clustering, to get the
possible split values

. Can be modified for categorical attributes
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Split Strategies: Gini Index

Used in IBM's IntelligentMiner
The Gini index for a set 7 of training objects is defined as follows

k
.. 2 for k classes ¢; with
gini(T)=1- E p;
Jj=1

frequencies p;

. small value of Gini index <> low heterogeneity
large value of Gini index <> high heterogeneity

Let A be the attribute that induced the partitioning 7, 7, ..., 7, of
7. The Gini index of attribute Awrt. Tis defined as follows:

. " | T
gini (T) =) =

-gini(T;)
1 |71
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-
Split Strategies: Information Gain  (Z

wl )
used in ID3 / C4.5 Zgj/ﬁj *-\Q“\M

Entropy

minimum number of bits to encode a message that contains the
class label of a random training object

. the entropy of a set T of training objects is defined as follows:

for k classes c; with

k
entropy(T) = Zi:l p;-log, p, frequencies p;

. entropy(T) = 0 if p,= 1 for any class ¢
. entropy (T) = 1 if there are k = 2 classes with p; = > for each 7

Let A be the attribute that induced the partitioning 73, 7, ..., 7, of
7. The information gain of attribute A wrt. T'is defined as follows:

| T
information gain(T, A) = entropy(T) — Zu

=T

-entropy(T,)
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Split Strategies: Example

9 ,YES" 5 ,NO" Entropy = 0.940

9 ,YES"5,NO" Entropy = 0.940

high normal weak strong
3,YES" 4 ,NO" 6 ,YES" 1 ,NO" 6 ,YES" 2 ,NO" 3,YES*3 ,NO*
Entropy = 0.985 Entropy = 0.592 Entropy = 0.811 Entropy = 1.0

information gain(T , humidity) = 0.94 — % -0.985 - % -0.592=0.151

information gain(T,wind) = 0.94 — % -0.811— % -1.0=0.048

Result: humidity yields the highest information gain



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 4069

Avoid Overfitting in Classification

- The generated tree may overfit the training data

. Too many branches, some may reflect anomalies
due to noise or outliers

. Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting

. Prepruning: Halt tree construction early—do not split
a node if this would result in the goodness measure
falling below a threshold

o Difficult to choose an appropriate threshold

. Postpruning: Remove branches from a “fully grown”
tree—get a sequence of progressively pruned trees

o Use a set of data different from the training data
to decide which is the “best pruned tree”
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Overfitting: Avoidance

Removal of noisy and erraneous training data
in particular, remove contradicting training data
Choice of an appropriate size of the training set
not too small, not too large
Choice of an appropriate value for minimum support
minimum support: minimum number of data objects a leaf node
contains
in general, minimum support >> 1
Choice of an appropriate value for minimum confidence
m/g/mum confidence: minimum fraction of the majority class in a leaf
node
typically, minimum confidence << 100%
leaf nodes can errors or noise in data records absorb
Post pruning of the decision tree
pruning of overspecialized branches

Overfitting: Notion
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Overfitting occurs at 7 if there are

two trees Fand £~ for which the following holds:
on the training set, £ has a smaller error rate than £
on the overall data set, £ has a smaller error rate than £

09
5 085
©
5 08 -
]
8 075 [
c ;
o 07 | j
.g
o 0.65 [
a 06 - training data set
L 1 e test data set
O 055

05 . L L L . L L L . :

0 o 20 30 40 50 60 70 80 90 100 tree size
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Pruning of Decision Trees: Approach

Error-Reducing Pruning [Mitchell 1997]

- Decompose classified data into training set and test set
- Creation of a decision tree £ for the training set

.- Pruning of £by using the test set 7

. determine the subtree of £ whose pruning reduces
the classification error on 7 the most =

. remove that subtree c>/ é\q
. finished if no such subtree exists A “/ ‘L'

- only applicable if a sufficient number of classified data
is available
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Pruning of Decision Trees: Approach

Minimal Cost Complexity Pruning
[Breiman, Friedman, Olshen & Stone 1984]

Does not require a separate test set

. applicable to small training sets as well
Pruning of the decision tree by using the training set

. classification error is no appropriate quality measure
New quality measure for decision trees:

. trade-off of classification error and tree size

. weighted sum of classification error and tree size

General observation
. the smaller decision trees yield the better generalization
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Pruning of Decision Trees: Notions (2)

o o
E, s Yo & e/ \a
e
$)
Let £, denote the subtree with root node e [ L}J

and { &} the tree that consists of the single node e
Relationship of £, and {e}:

. for small values of a: CCr(E, o) < CCr{€}, o)

. for large values of a: CCr(£, o) > CCr({€}, o)
Critical value of o for e:

Uit COrl Eer Ogrit) = CCrA{ €}, atgrir)

. for a > gy, it's worth to prune the tree at node e
weakest /ink.: node with minimal value of o
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Pruning of Decision Trees: Notions

Size | £ of a decision tree £: number of leaf nodes

Cost-complexity quality measure of £ with respect to training set 7
and complexity parameter o > 0:

CC,(E,a)=F,(E)+a|E|

For the smallest minimal subtree E(a) of E wrt. q, it is true that:
. (1) there is no subtree of £with a smaller cost complexity
. (2) if E(a)and B both fulfill (1), then is £(«) a subtree of B
a=0: Ea)=E
o = oo: E(a) = root node of £

0 < a < o0 E(a)is a proper substructure of E, i.e. more than the
root node or the root node
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Pruning of Decision Trees: Method

Start with a complete tree £
Iteratively remove the weakest link from the current tree

If there are several weakest links, remove them all in
the same step

Result: sequence of pruned trees

. E(ay) > E(ay)) > ... > E(a,,) . - :([/Te‘u’éJ
. whereo; <o, <...<a,

Selection of the best E(a.)

. Estimate the classification error on the overall data
set by an I-fold cross validation on the training set
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Pruning of Decision Trees: Example
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i [E_i|

observed error

estimated error

actual error

71

0,00

0,46

0,42

63

0,00

0,45

0,40

58

0,04

0,43

0,39

0,10

0,38

0,32

34

0,12

0,38

0,32

1
2
3
4 40
5
6 19

8 9

0,20

0,32

0,32

0,39

0,31

0,34

9 7

0,41 0,47 0,47

£ yields the smallest estimated error and the lowest
actual classification error
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Enhancements to basic decision tree

induction o LUy
ape _n : o I o >,

Allow for continuous-valued attributes

. Dynamically define new discrete-valued attributes that
partition the continuous attribute value into a discrete
set of intervals

Handle missing attribute values

. Assign the most common value of the attribute
. Assign probability to each of the possible values
Attribute construction

. Create new attributes based on existing ones that are
sparsely represented

. This reduces fragmentation, repetition, and replication
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Extracting Classification Rules from Trees
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Represent the knowledge in the form of IF-THEN rules
One rule is created for each path from the root to a leaf
Each attribute-value pair along a path forms a conjunction
The leaf node holds the class prediction

Rules are easier for humans to understand

Example

IF age = ‘<=30" AND student = ‘no” THEN buys_computer ="no’
IF age = "<=30" AND student = "yes’ THEN buys computer ="yes’
IF age = '31...40° THEN buys_computer = "yes’

IF age = *>40" AND credit_rating = ‘excellent’
THEN buys computer = ‘yes’

IF age = *>40" AND credit_rating = ‘fair’ THEN buys _computer = *no

7
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Classification in Large Databases
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Classification—a classical problem extensively studied by
statisticians and machine learning researchers

Scalability: Classifying data sets with millions of examples
and hundreds of attributes with reasonable speed
Why decision tree induction in data mining?

. relatively faster learning speed (than other classification
methods)

. convertible to simple and easy to understand
classification rules

. can use SQL queries for accessing databases
. comparable classification accuracy with other methods
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Scalable Decision Tree Induction
Methods in Data Mining Studies

SLIQ (EDBT'96 — Mehta et al.)

. builds an index for each attribute and only class list and
the current attribute list reside in memory

SPRINT (VLDB96 — J. Shafer et al.)
. constructs an attribute list data structure
PUBLIC (VLDB'98 — Rastogi & Shim)

. integrates tree splitting and tree pruning: stop growing
the tree earlier

RainForest (VLDB'98 — Gehrke, Ramakrishnan & Ganti)

. separates the scalability aspects from the criteria that
determine the quality of the tree

. builds an AVC-list (attribute, value, class label)

' F5 tEtioR"6F Classification Results™ <™
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Data Cube-Based Decision-Tree
Induction

Integration of generalization with decision-tree induction
(Kamber et al. '97).

Classification at primitive concept levels
. E.g., precise temperature, humidity, outlook, etc.

. Low-level concepts, scattered classes, bushy
classification-trees

. Semantic interpretation problems.
Cube-based multi-level classification
. Relevance analysis at multi-levels.
. Information-gain analysis with dimension + level.
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Chapter 4: Classification

Introduction

. Classification problem, evaluation of classifiers
Bayesian Classifiers

. Optimal Bayes classifier, naive Bayes classifier, applications
Nearest Neighbor Classifier

. Basic notions, choice of parameters, applications
Decision Tree Classifiers

. Basic notions, split strategies, overfitting, pruning of decision trees

Support vector machines
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Support Vector Machines (SVM)

Motivation: Linear Separation
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Maximum Margin Hyperplane

Vectors in 97 9 represent objects

Objects belong to exactly one of
two respective classes

For the sake of simpler formulas,
the used class labels are:

y=-land y=+1

Classification by linear separation:

determine hyperplane which
separates both vector sets with a
»,maximal stability"

Assign unknown elements to the
halfspace in which they reside
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Observation: There is no unique hyperplane to separate p, from p,
Question: which hyperplane separates the classes best?
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’
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Criteri
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Stability at insertion
Distance to the objects of both classes
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Support Vector Machines

- Problems of linear separation

. Definition and efficient determination of the maximum

stable hyperplane

. Classes are not always linearly separable
. Computation of selected hyperplanes is very expensive

. Restriction to two classes

Approach to solve these problems

. Support Vector Machines (SVMs) [Vapnik 1979, 1995]
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Support Vector Machines: Principle

maximum margin hyperplane

margin

Basic idea: Linear separation with the
Maximum Margin Hyperplane (MMH)

Distance to points from any of the
two sets is maximal, i.e. at least

Minimal probability that the
separating hyperplane has to be
moved due to an insertion

Best generalization behaviour

MMH is ,maximally stable"

MMH only depends on points p; whose
distance to the hyperplane exactly is &

p; is called a support vector
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Maximum Margin Hyperplane

Recall some algebraic notions for feature space £S5

. Inner product of two vectors x,y € F5: (x,y)

o €.g., canonical scalar product: <X,y> = Zil (Xl. -yi)

Hyperplane H(w,b) with normal vector w and value 5.
xe H(w,b) < (W,x)+b=0
. The normal vector w may be normalized to wo:

w’ =<1>-w, then <w°,w°>:1
W, W

Distance of a vector x to the hyperplane Hw?Yb):

dist(x,H(wO,b)):‘ <W°,x>+b ‘
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Maximum Margin Hyperplane

Maximize & subject to ¥/ e [1..71]: ¥, -(<w°,xi>+b)2(§
Scaling w0 by 1/¢, i.e. w = w? / € yields the rephrased condition
vie o y,-(w,x,)+5')>1
Maximizing & corresponds to minimizing {w, w) = (w° w°) / £2:
Primary optimization problem:

Find a vector w and value b that minimize (w,w)

subject to Vi e [1..7]: yi-(<w,xi>+b)21
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Computation of the
Maximum Margin Hyperplane

Two assumptions for classifying x; (class 1: y;= +1, class 2: y;= -1):

1) The classification is accurate (no error)
y=-1 = <w,xi>+b<0
y=+1 = <w,xi>+b>0} ilwx)+)>0

2) The margin is maximal
Let ¢ denote the minimum
distance of any training object &£ = min
x; to the hyperplane H(w,b): x,;eTR

wl,x )+b
(whx,)+b|

Then: Maximize & subject to Vi e [1..1]: y, -(<w°,xl.>+b)2 &
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Dual Optimization Problem

For computational purposes, transform the primary optimization
problem into a dual one by using Lagrange multipliers

Dual optimization problem: Find parameters ¢, that

minimize L(a):znlai —%Zn:ial, A Yy -<xl. -xj>
i=1

i=l j=I

subjectto Y " @,-y,=0 and0<g;

For the solution, use algorithms from optimization theory
Up to now only linearly separable data
If data is not linearly separable: Soft Margin Optimization
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Soft Margin Optimization

Problem of Maximum Margin Optimization: How to treat non-linearly
separable data?
Two typical problems:

[ ]
o , o
/I ° ///
o .
[ ]
e O, o ° ° ® %0 o
° /9 o
° ° o ° ’ 7 o
o, ,
o © o o o
e o o
o) o) (e} o]
data points are not separable complete separation is not optimal

Trade-off between training error and size of margin
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Soft Margin Optimization

Dual optimization problem with Lagrange multipliers:

Dual OP: Maximize L(c) = anai ‘%Zn:i% -, '<X,~ .Xj>

i=1 i=l j=1

subjectto > @;-y,=0 and0< o< C

i=1

0<o,<C: p;is a support vector with &= 0 ° 'f/' ,°
o;=C: p;is a support vector with & >0 e p o7
a,;=0: p;is no support vector J //'é}o,z’ °
,"’Pf\\’
. . P P o
Decision rule: SN

v o o

h(x)= sign[ Z a; -y, -<X,-,X>+ b} 0 o °

x,eSV L7 o
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Soft Margin Optimization

¢ o o -7 . - Additionally regard the number of
Lo /,’ training errors when optimizing:
* ,/'é\ofzf e . &;is the distance from p;, to the
N margin (often called slack
PR ° variable)
e e
ro e ° . Ccontrols the influence of
2o ° single training vectors

Primary optimization problem with soft margin:

. L. 1 n
Find an H(w,b) that minimizes §<w,w>+ C 'Zi=1 &

subject to v/ e [1../7]: y,-(Wx,)+b)21-E and &, > 0
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Kernel Machines:
Non-Linearly Separable Data Sets

Problem: For real data sets, a linear separation with a high
classification accuracy often is not possible

Idea: Transform the data non-linearly into a new space, and try to
separate the data in the new space linearly (extension of the
hypotheses space)

\ 1
\
L4 o ® . e ° /)
o \ °
o0 o °\ o0 /o
° e o \ e ®
° o 1
° \ ° B
L 2P \ e o/ ©
\ 7
o o o o o N ®*°® /o
° . ° /
o . / o
o ) \ /
4
o A o
o
o ° o

Example for a quadratically separable data set
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Kernel Machines:
Extension of the Hypotheses Space

- Principle

[input space ] [ ¢ » [ extended feature space |

. Try to separate in the extended feature space linearly

- Example
[ eva ] [0 Gnadmeya

. Here: a hyperplane in the extended feature space is a
polynomial of degree 2 in the input space
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Kernel Machines: Example (2)

Input space (2 attributes):

X:(xl’xz)
X2
X, +x, =r
o 7777~ ° °
Vi Y
o , e o .
1
1 ° \ o
1
O_ 1
o\ ° 10
\ 7
o
\ 4
A b ’ o
o “o_ _-’ o
o
o o © ¥
0 1
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Kernel Machines: Example

Input space (2 attributes): Extended space (6 attributes):
— 2
X_(xlaxz) ¢(X)= 2 X5, N2 ) 1)
X
5 2 sz/_/
X, =0X, ’
/ X, =0-X,
\ 1 4
\ ° ; © ° ’
\ 7’
\\ ° ° Ill ° [ ,//
\ 1 4
o\ ) o s &P
\ ® , 1 e 7/
\ ° ’ o .,
o™\ e / o X o 7 oo
° \\\ /’/0 G\%& //Oo 2
X
Y e
A
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Kernel Machines

Introduction of a kernel corresponds to a feature transformation

¢(X) FSold ——>FSnew

Dual optimization problem:

Maximize [ (cr) = za ——ZZa oYy <¢(X)¢(X )>

1111

subject to Z,_lai .y, =0and0< o< C

Feature transform ¢ only affects the scalar product of training vectors

Kernel K is a function: K¢ (Xi , xj)= <¢(Xi), ¢(X;)>
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Kernel Machines: Examples Support Vector Machines: Discussion

+ generate classifiers with a high classification accuracy

+ relatively weak tendency to overfitting (generalization
theory)

+ efficient classification of new objects
+ compact models

— training times may be long (appropriate feature space may
be very high-dimensional)

Radial basis kernel 7 Polynomial kernel (degree 2)

K(x,y)= exp(_ ylx— y|2) K(x.y)= (<X’ y)+ 1)d expensive implementation
— resulting models rarely provide an intuition
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Chapter 5: Mining Association Rules
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Example: Basket Data Analysis

Transaction database
. {butter, bread, milk, sugar}
. {butter, flour, milk, sugar}
. {butter, eggs, milk, salt}
- {eggs}
. {butter, flour, milk, salt, sugar}

. Question of interest:
. Which items are bought together frequently?

Applications
. Improved store layout
. Cross marketing
. Focused attached mailings / add-on sales
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Chapter 5: Mining Association Rules

Introduction
. Transaction databases, market basket data analysis

Simple Association Rules

. Basic notions, apriori algorithm, hash trees, FP-tree,
interestingness

Hierarchical Association Rules
. Motivation, notions, algorithms, interestingness

Extensions and Summary
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What Is Association Mining?

= Association rule mining

« Finding frequent patterns, associations, correlations, or
causal structures among sets of items or objects in
transaction databases, relational databases, and other
information repositories.

o Rule form: “Body = Head [support, confidence]”
= Applications

« Basket data analysis, cross-marketing, catalog design, loss-
leader analysis, clustering, classification, etc.

= Examples
« buys(x, “diapers”) = buys(x, “beers”) [0.5%, 60%]
« major(x, “"CS”) ~ takes(x, "DB") = grade(x, “A") [1%, 75%]
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Association Rule: Basic Concepts

Given: (1) database of transactions, (2) each transaction is
a list of items (purchased by a customer in a visit)

Find: all rules that correlate the presence of one set of
items with that of another set of items

. E.g., 98% of people who purchase tires and auto
accessories also get automotive services done

Applications
. * = Maintenance Agreement (What the store should
do to boost Maintenance Agreement sales)

. Home Electronics = * (What other products should
the store stocks up?)

. Attached mailing in direct marketing
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Association Rule Mining: A Road Map

Boolean vs. quantitative associations (Based on the types of values
handled)
o buys(x, “SQLServer”) N buys(x, "DMBook”) — buys(x, “"DBMiner”)
[0.2%, 60%]
o Short notation: SQLServer, DMBook = DBMiner [0.2%, 60%]
« age(x, "30..39")  income(x, “42..48K") — buys(x, “"PC") [1%, 75%]
Single dimension vs. multiple dimensional associations
Single level vs. multiple-level analysis
« What brands of beers are associated with what brands of diapers?
Various extensions
« Correlation, causality analysis
o Association does not necessarily imply correlation or causality
« Maxpatterns and closed itemsets
« Constraints enforced
o E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?
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Rule Measures: Support and Confidence

cusomer | Find all the rules X & ¥ = Z with
wrdiaper | minimum confidence and support

. support, s, probability that a
transaction contains {X, Y, Z}

. confidence, ¢ conditional

Customer probability that a transaction

buys beer having {X, Y} also contains Z

Transaction ID ltems Bought Léet minimum support 50%, and

2000 AB,C minimum confidence 50%, then
1000 A,C we have
4000 A,D . A= C (50%, 66.6%)
5000 B.E.,F . C=A (50%, 100%)
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Chapter 5: Mining Association Rules

Introduction
. Transaction databases, market basket data analysis

Simple Association Rules

Basic notions, apriori algorithm, hash trees, FP-tree,
interestingness

Hierarchical Association Rules
Motivation, notions, algorithms, interestingness

Extensions and Summary
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Simple Association Rules: Basic Notions

Items I = {i, ..., i,;}: a set of literals (denoting items)

Itemset X: Set of items Xc 7

Database D. Set of transactions T, each transaction is a set of items
Tcrl

Transaction 7 contains an itemset X: X< T

The items in transactions and itemsets are sorted lexicographically:

. itemset X= (x;, X, ..., X, ), Wwhere x; < X _ ... < Xx;
Length of an itemset: number of elements in the itemset
k-itemset: itemset of length &

Support of an itemset X: fraction of transactions in D that contain X:

. support(X) = count ({7, X< 73}) / count (D)
Association rufe: Rule X= Y, where Xc [, Yc Iand XN YV =
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Mining Association Rules—Example

Transaction ID |ltems Bought Min. support 50%
2000 AB,C Min. confidence 50%
1000 A,C
4000 AD E&?quent Itemset Sup;);)(;t
(o]
5000 B,E,F (B} 50%
{C} 50%
{A,C} 50%

For rule A= C:
support = support({4, C}) = 50%
confidence = support({4, C}) / support({A}) = 66.6%
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Simple Association Rules: Basics (2)

Support s of an association rule X= Y in D
. Support of itemsets covering Xu Y in D
. Support (X=Y, D) = count ({7, Xu Y T})/ count (D)

Confidence ¢ of an association rule X= Y in D

. Fraction of transactions which contain the itemset Y from
the subset of transactions from D which contain the
itemset X

. Conf(X=VY, D)=count ({7, Xu Yc T})/count {7, X< T})

. Conf (X=Y, D) = support (XU Y) / support (X)

Task of mining association rules

. Given a database D, determine all association rules having
a support > minSup and confidence > minConf
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Mining Association Rules: Key Steps

Step 1: Find frequent itemsets, i.e. sets of items that
have at least a minimum support

. A subset of a frequent itemset must also be a
frequent itemset
o i.e., if {A B} is a frequent itemset, both {4} and {8} must
be frequent itemsets
. Iteratively find frequent itemsets with cardinality from
1to k

Step 2: Use the frequent itemsets {A,B,...,Z } to generate
association rules, e.g. A4,B,... = Zor A.Z,... = B,C
. n frequent items yield 2" — 2 association rules
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Mining Frequent Itemsets: Basic Idea

Naive Algorithm

. count the frequency of for all possible subsets of I in the
database

» too expensive since there are 27 such itemsets for |I| = m
items

The Apriori principle (monotonicity):
Any subset of a frequent itemset must be frequent

Method based on the apriori principle

First count the 1-itemsets, then the 2-itemsets, then the 3-
itemsets, and so on

. When counting (k+1)-itemsets, only consider those (k+1)-
itemsets where all subsets of length & have been determined
as frequent in the previous step
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Generating Candidates (Join Step)

Requirements for candidate 4-itemsets C,
Must contain all frequent A-itemsets (superset property C,oL,)
. Significantly smaller than the set of all A&subsets
. Suppose the items are sorted by any order (e.g., lexicograph.)
Step 1: Joining
. Consider frequent (k— 1)-itemsets pand g
. pand g are joined if they share the same first k— 2 items

L., (1,2,3
insert into G, Pt (l | l)
select p.i,, p.b, ...y Plicas Policrs Golgs (%’ % }4) € G
from L/(—l p, Lk—l q q € L/(—l (1I 2[ )

where p.ij=q.iy, ..., Py 5 =Gl 5, Py < Gljy
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The Apriori Algorithm

variable C;: candidate itemsets of size k
variable £,: frequent itemsets of size k

L, = {frequent items}
for (k=1; L, !=0; k++) do begin
// JOIN STEP: join L, with itself to produce C,,,
// PRUNE STEP: discard (k+1)-temsets from C,,,that contain
non-frequent A-itemsets as subsets
C.; = candidates generated from £,

for each transaction ¢ in database do
Increment the count of all candidates in G,
that are contained in ¢
L., = candidates in C,, with min_support
end
return u, [,

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 5016

Generating Candidates (Prune Step)

Step 2: Pruning
Remove candidate k-itemsets which contain a non-frequent
(k—1)-subset s, i.e., s ¢ L,
. forall /temsets c in C,do
forall (k-1 )-subsets s of cdo
if (s is not in L,,) then delete ¢ from C,

Example 1
- £L;={(123),(124),(134),(135),(234)}
. Candidates after the join step: {(1234), (1345)}

. In the pruning step: delete (1 3 4 5) because (345) ¢ L;, i.e.,
(3 45) is not a frequent 3-itemset; also (1 4 5) ¢ /;

. G={1234)
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Generating Candidates — Example 2

L, ={abc, abd, acd, ace, bcd}

Self-joining: £;*L;

. abcd from abcand abd

. acde from acd and ace

Pruning:

. abcd is ok: abc, abd, acd, bed are in L;

. acdeis removed because ade (and cde) is notin L,

C,= {abcd}
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How to Count Supports of Candidates?

Why is counting supports of candidates a problem?
. The total number of candidates can be very huge
. One transaction may contain many candidates

Method
. Candidate itemsets are stored in a /ash-tree

. Leafnodes of hash-tree contain lists of itemsets and
their support (i.e., counts)

. Interior nodes contain hash tables

. Subset function finds all the candidates contained in
a transaction
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Generating Candidates — Full Example

Database D

TID

ltems

100
200
300
400

134
235
1235
25

Scan D

itemset|s

{13}
{2 3}
{2 5}
{3 5}

N WNN|SE

&

itemset

{235}

Scan D
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Hash-Tree — Example

for 3-Itemsets

¢

minsup = 2

itemset

S

{1}
{2}
{3}
{4}
{5}

C
w—\wwr\)_p

itemset

{12}
{13}
{15}
{23}
{2 5}
{3 5}

NWN=2N=|C

3 |itemset

sup

{235)
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L] itemset

{1}
{2}
{3}
{5}

=
wmww.p

Scan D

itemset

{12}
{13}
{15}
{23}
{2 5}

T 183

Scan D,

/

C, is empty
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HK) =Kmod 3

(3415

(3711
(3411
(348

(2 4 6)
(279)

(247)
(5710
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Hash-Tree — Construction Hash-Tree — Counting

Search all candidate itemsets contained in a transaction
T=(t b ... )
At the root
Determine the hash values for each item & & ... £,,in T
Continue the search in the resulting child nodes

At an internal node at level d(reached after hashing of

Searching for an itemset

. Start at the root

. At level d: apply the hash function 4 to the ¢th item
in the itemset

Insertion of an itemset s
h for th ding leaf node, and insert item &)
: sear.c or .e corresponding €al node, and inse . Determine the hash values and continue the search for each
the itemset into that leaf item £ with 7> / and j< n—k+i
J <
. if an overflow occurs: . At a leaf node
o Transform the leaf node into an internal node . Check whether the itemsets in the leaf node are contained in
» Distribute the entries to the new leaf nodes according to transaction 7

the hash function
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Counting Itemsets in a Transaction using a Hash-

Tree — Example Methods to Improve Apriori’s Efficiency (1)

=K : i
AK) = Kmod 3 - Hash-based itemset counting [Park, Chen & Yu '95]

Transaction (1, 3, 7, 9, 12) 5
39 12/I1:F\~ . Manage support counts by using a hash table (not a hash tree),
7 T 0[172 i.e. several k-itemsets share the same hashing bucket in table /.
. A kitemset whose corresponding hashing bucket count is below

9,1
(367) | I (1411 :(7 8 9)-; : 23 81 GIHE :g g %-i It\rl]c?rzherz?fsi:ig:t (;acr;r;(s)z It): Z;iqdlijjgtfes but less accurate counting
| ! .
@78j| {111 12? , (56 7): i(5 8 11)] |
| R .

Transaction reduction [Agrawal & Srikant ‘94]

9,12
(R il Reaiiel A . A transaction that does not contain any frequent k-itemset is
(4151 pG 71 1(246)1 (24 7)1 | useless in subsequent scans
| I|(34111 |(279)I|(5710}| | q
! ' (348), ! ! ! I Remove these transactions from the database

More efficient database scans (read accesses) but several write
accesses to the database

|:| Tested leaf nodes I 1 Pruned subtrees

I-a
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Methods to Improve Apriori’s Efficiency (2)

Partitioning [Savasere, Omiecinski & Navathe ‘95]

Any itemset that is potentially frequent in DB must be relatively
frequent in at least one of the partitions of DB (/minsup |/ #partitions)

Process the database partition by partition in main memory
More efficient for partitions but expensive combination of partial results
Sampling [Toivonen ‘96]

Mining on a subset of given data, lower support threshold + a method
to determine the completeness

Apply the apriori algorithm to a subset of the database

Count support of the resulting frequent itemsets on the entire database

Potentially, find new candidates and count them on the database
Dynamic itemset counting

add new candidate itemsets only when all of their subsets are
estimated to be frequent

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 5027

Is Apriori Fast Enough? — Performance Bottlenecks

The core of the Apriori algorithm:

Use frequent (kK — 1)-itemsets to generate candidate frequent
k-itemsets

Use database scan and pattern matching to collect counts for the
candidate itemsets

The bottleneck of Apriori: candidate generation
Huge candidate sets:

o 10* frequent 1-itemsets will generate 107 candidate 2-itemsets

o To discover a frequent pattern of size 100, e.qg., {a;, a,, ...,
100}, ONe needs to generate 2100~ 1030 candidates.

. Multiple scans of database:
o Needs n+1 scans, n is the length of the longest pattern
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Generating Rules from Frequent Itemsets

For each frequent itemset X

For each subset A of X, form a rule A= (X— A)

Delete those rules that do not have minimum confidence
Computation of the confidence of a rule A= (X— A)

confidence(A = (X — A)) = support(X)

support(A)

Store the frequent itemsets and their support in a hash table in
main memory - no additional database access

itemset support

{A}
Example: X = {A, B, C}, minConf=60% {B}

conf(A=B,C) =1, conf (B,C=A)=1/2 [{S&

conf(B=A,C)=1/2; conf(A,C=B)=1 1A, B}

N[fANWIO AN

A C
conf (C= A, B) = 2/5; conf (A, B=C)=2/3 |gg
{A, B, C}
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Mining Frequent Patterns Without Candidate
Generation

Compress a large database into a compact, Frequent-
Pattern tree (FP-tree) structure

. highly condensed, but complete for frequent pattern
mining
. avoid costly database scans

Develop an efficient, FP-tree-based frequent pattern
mining method

. A divide-and-conquer methodology: decompose mining
tasks into smaller ones

. Avoid candidate generation: sub-database test only!
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Construct FP-tree from a Transaction

DB Benefits of the FP-tree Structure
TID Items bought (ordered) frequent items
100 {f,a cd g i m p} {f, ¢, a, m, p} .
200 {4 b,c f 1m0} i ¢, a b, m) - Completeness:
300  {b,f, h,j, 0} b} . never breaks a long pattern of any transaction
400 {b, ¢, k, s, p} {¢, b, p} . .
500 {afc el p mn ¢, am, p} (2) . preserves complete information for frequent pattern
T bl mining
Steps: cader Tante Compactness
1. Scan DB once, find uent Item frequencv head

. reduce irrelevant information—infrequent items are gone

. frequency descending ordering: more frequent items are
more likely to be shared

. never be larger than the original database (if not count
node-links and counts)

. Experiments demonstrate compression ratios over 100

1-itemsets (single items

2. Order frequent items in
frequency descending order

S SR 0w
ww W w A A

3. Scan DB again, construct FP-
tree starting with most
frequent item per transaction  min_support = 0.5
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Mining Frequent Patterns Using FP-tree Major Steps to Mine FP-tree

General idea (divide-and-conquer)

. Recursively grow frequent pattern path using the FP- 1) Construct conditional pattern base for each node in the
tree FP-tree
Method 2) Construct conditional FP-tree from each conditional
. For each item, construct its conditional pattern-base pattern-base

(prefix paths), and then its conditional FP-tree

» 3) Recursively mine conditional FP-trees and grow
. Repeat the process on each newly created conditional

frequent patterns obtained so far

FP-tree
. Until the resulting FP-tree is empty, or it contains only = If the conditional FP-tree contains a single path,
one path (single path will generate all the combinations of its simply enumerate all the patterns

sub-paths, each of which is a frequent pattern)
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Step 1: From FP-tree to Conditional Pattern
Base

Starting at the frequent header table in the FP-tree
Traverse the FP-tree by following the link of each frequent item

Accumulate all of transformed prefix paths of that item to form a
conditional pattern base

Header Table
Item frequency head Conditional pattern bases
f 4 -—- item cond. pattern base
c 4 -—— .
a 3 -~ ¢ f:3
b 3 -~ a fe:3
m 3 -~ T £ e

\ b fea:l, f:1, c:1
p 3 o N

a m fea:2, fcab:1
\
3 P feam:2, ch:1
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Step 2: Construct Conditional FP-tree

For each pattern-base

. Accumulate the count for each item in the base

. Construct the FP-tree for the frequent items of the
pattern base

m-conditional

Header Table pattern base:
Item frequency head | _ - fca:2, fcab:1
f 4 P . All frequent
c 4 - , ] i {} patterns
3 . . . 5 | concerning m
a -~
< m,
b 3 Lople ; 3>
- m, cm, am,
m 3 o« N it | fcm, fam, cam,
p 3 \{_ c3 cm, fam, cam,
! | fcam
a3

m-conditional FP-tree
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Properties of FP-tree for Conditional Pattern
Base Construction

Node-link property

Data Mining Algorithms — 5034

. For any frequent item g, all the possible frequent
patterns that contain g, can be obtained by following
a;s node-links, starting from a;s head in the FP-tree
header

Prefix path property

. To calculate the frequent patterns for a node g;in a
path A, only the prefix sub-path of a;in P need to be
accumulated, and its frequency count should carry the
same count as node a;
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Mining Frequent Patterns by Creating
Conditional Pattern-Bases

Data Mining Algorithms — 5036

Item | Conditional pattern-base Conditional FP-tree
p {(fcam:2), (cb:1)} {(c:3)}p
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m
b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}|a
C {(f:3)} {(f:3)}]c
f Empty Empty
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Step 3: Recursively mine the conditional Single FP-tree Path Generation
FP-tree
{} .
| . Suppose an FP-tree T has a single path P
m-conditional FP-tree: % }3 - The complete set of frequent pattern of T can be
c-|'3 generated by enumeration of all the combinations of the
a:3 sub-paths of P
Conditional pattern Conditional pattern Conditional pattern {3
base of “am”: (fc:3) base of “cm”: (f:3) base of “cam”: (f:3) | é','nfggﬂ.ﬁﬁgt,?,attems
{ ) 4 g pid
.l 3 | | c3 > fm, cm, am,
% | £3 13 al' 3 fcm, fam, cam,
c:3 cm-conditional FP-tree cam-conditional FP-tree . fcam
am-conditional FP-tree .
m-conditional FP-tree
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Principles of Frequent Pattern Growth Why Is Frequent Pattern Growth Fast?
Pattern growth property - Performance study in [Han, Pei&Yin ‘00] shows

. Let o be a frequent itemset in DB, B be a's
conditional pattern base, and 3 be an itemset in B.
Then o U B is a frequent itemset in DB iff B is
frequent in B.

. FP-growth is an order of magnitude faster than
Apriori, and is also faster than tree-projection
Reasoning

- “abcdef” is a frequent pattern, if and only if - No candidate generation, no candidate test

. “abcde” is a frequent pattern, and + Use compact data structure
. “f"is frequent in the set of transactions containing - Eliminate repeated database scan
“abcde” . Basic operation is counting and FP-tree building
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FP-growth vs. Apriori: Scalability With the Support FP-growth vs. Tree-Projection: Scalability wi
Threshold Support Threshold

Data set T25120D100K:

100 - T25 avg. length of transactions
! Data set T25I120D10K: 9. €ng '
90 - . 140 - 120  avg. length of frequent itemsets
! T25 avg. length of transactions \ . -
\ . v D 100K database size (#transactions)
80 - I 120 avg. length of frequent itemsets 120 - X
70 ' D 10K database size (#transactions) \
— X — 100 - \
60 - k g \
! @ \ —e—D2 FP-growth
T \ L 80 - \
g 50 ‘\ ——e—— D1 FP-grow th runtime g \ — = — D2 TreeProjection
§ 40 ‘\ — =¥~ — D1 Apriori runtime .g 60 -
14 A S
30 - ! x 40 -
20 + S - 20 -
10 - RN 0
N * \x_ — T T T T 1
0 \ \ \ \ — * 0 0,5 1 1,5 2
0 0,5 1 1,5 2 2,5 3
Support threshold (%)
Support threshold(%)
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. . . . . . . .
Presentation of Association Rules: Table Form Presentation of Association Rules: Chart Form
Body | Implies | Head |Supp [ Conf) | F | 6 | w | 1 =
1 eost(x) = 0.00~1000.00 ==+ rtevenue(x) = 1.00~500.00° 20.45 404 I
2 |cost(x) = 1.00~1000 00 ==> revenue(x) = 0 00~1000 OO M4 M0 &k File Mining Assoristor Yiew Window Opiions Help e
3 |cost(x) = 1.00~1000 00 ==>  omer_gy(x) = 000100 00 5917 B4M Ha| B # w5 7]
4 |cost(x) = 1.00~1000 00 ==>  ravanue(x) = 1000 00150000 045 148 - :
5 |cost(x) = 1.00-1000 00" ==> ragion(x} = Unitad States’ 256 320 bl SR —
6 |cost(x) = '1000.00~2000.00° ==>  onder_giyfx) = 0.00~100.00° 12.91 593 Golor L[
7 order giy(x) = 0.00~100.00' revenue() = 1.00~500.00' 28.45 34.54 1% Confidence - 100%| f
8 [order giy{n) = D00~ 10000 ] costl) = 1000.00~2000.00 1291 1567 ’ "
9 [order_gty(x) = 0.00~100.00" region(x) = 'United States' 259 31.45 IEEI0HY SUppoTt Q
10 |order_gtyf) = 0.00~100.00 costhx) = 1.00~1000.00° 5907 718 iid
M |order_gty(x) = 0.00~100.00' product_line(x) = Tents' 13.82 16.42 P +
12 |order_gty(x) = 0.00~100.00' revenue(x) = 500.00~1000.00° 1967 2388 ?i
13 |product_line(x) = Tents" order_gty(x) = 0.00~100.00° 13.52 9872 L~ ’il
14 |regionix) = United States’ order_gty(x) = 0.00~100.00° 259 81.94 g z A
15 |regionix) = United States’ costix) = 0.00~1000.00 22.56 7138 . :
16 |revenue(x) = 0.00~500 00° costi) = D 00~1000.00° 245 m_ DBMiner System bod
17_|revenue(x) = 0.00~500.00' order_gty(x) = 0.00~100.00° 2845 100 y - omotions = [No Promotion] ==» [29°
18 |revenue(x) = 1000.00~1500.00° costl) = 1.00~1000.00' 1045 9675 [Han et al. ]_996] Gonder = [M]; [support: 37 0B% , confidence: 50.55%] ‘
19 |revenue(x) = 500.00~1000.00" costl) = 0.00~1000.00' 20.46 100 = B
20 |revenue(x) = 500.00~1000.00° order_gty(x) = 0.00~100.00° 19.67 96.14 head
7
= e T
23 |costp) = D.00~1000.00 = ’E"’jsr“;(‘*y)(:) DO0-SI0D AND B 404 e —
2 |eost(x) = D00~1000.00° = ’2‘:@2&:&&; e 2845 404
25 |cost() = 0. 00~1000.00 = ’;‘:;E”r“j‘xy)&) S0 D0-00 0 AN e Tm DBMiner System
26 |cost(x) = 1.00~1000.00° == ’E"’;Qﬁ‘?&) E”g ggjgguogﬂ AND 1967 2793 [Han et al. 1996]
277 ‘f,i‘ﬁ‘jﬁx?i‘é”ﬁﬁﬂ%ﬂ'? ==>  revenue(x) = 500 00~1000.00° 1967 foche] - \

S0, Sheeti =i - For Help, press F1 L V)
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Presentation of Association Rules: Rule Graph

&b File Mining Associato

ro View  Window tions  Hel
‘EIQ B] 2| w3 2]
£ ¢o = 0w -] ~a[]

Education Level = [High School Degree]

Wil e o s |

[23
-+
DBMiner System
[Han et al. 1996]
ForHelp, press F1 [ oNoM[
RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 5047

Interestingness Measurements

Objective measures

. Two popular measurements:
. support and

. confidence

Subjective measures [Silberschatz & Tuzhilin, KDD95]
. A rule (pattern) is interesting if it is

. unexpected (surprising to the user) and/or

. actionable (the user can do something with it)
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Iceberg Queries

Iceberg query: Compute aggregates over one attribute or
a set of attributes only for those whose aggregate values
is above certain threshold
Example:

select P.custID, P.itemID, sum(P.qty)

from purchase P

group by P.custID, P.itemID

having sum(P.qty) >= 10
Compute iceberg queries efficiently by Apriori:
. First compute lower dimensions

. Then compute higher dimensions only when all the
lower ones are above the threshold
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Criticism to Support and Confidence

Example 1 [Aggarwal & Yu, PODS98]
. Among 5000 students
o 3000 play basketball (=60%)
o 3750 eat cereal (=75%)
o 2000 both play basket ball and eat cereal (=40%)

. Rule play basketball = eat cereal [40%, 66.7%] is
misleading because the overall percentage of students
eating cereal is 75% which is higher than 66.7%

.- Rule play basketball = not eat cereal [20%, 33.3%]
is far more accurate, although with lower support and
confidence

. Observation: play basketball and eat cereal are
negatively correlated
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Interestingness of Association Rules

Goal: Delete misleading association rules
Condition fora rule A= B

PAVE) > P(B)+d  fora suitable threshold d > 0
P(4)
Measure for the interestingness of a rule
P(AVB) P(B)
P(4)

. The larger the value, the more interesting the
relation between A and B, expressed by the rule.

Other measures: correlation between A and B > _P(4v B)

P(4)P(B)
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Other Interestingness Measures: Interest

P(AUB)

Interest (correlation, Iift):
P(A)P(B)

. taking both P(A) and P(B) in consideration
. Correlation equals 1, i.e. P(A U B) = P(B) - P(A), if A
and B are independent events

. A and B negatively correlated, if the value is less than
1; otherwise A and B positively correlated

x[TAT ] olo[o]o Itemset SHERCE Interest
XY 25% 2
Y|1/1/0/0/0|0(0|0 Xz 37.50% 0.9

Z|10| 11| 1]{1]1]1]1 Y,Z 12.50% 0.57
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Criticism to Support and Confidence:
Correlation of Itemsets

Example 2

X[1]111]10/0|0|0| |Rule |Support|Confidence

Y[{1{1/0/0/0/0|0|0| |[X=>Y| 25% 50%

Z|I0|1]1|1]1/1|1]1] [X=>Z]|37.50% 75%

. Xand Y: positively correlated
. X and Z: negatively related
. support and confidence of X=>Z dominates
- We need a measure of dependent or correlated events

P(AU B)
CONr | p = ————
" P(A)P(B)
P(B|A)/P(B) is also called the lift of rule A => B
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Chapter 5: Mining Association Rules

Introduction
. Transaction databases, market basket data analysis

Simple Association Rules

. Basic notions, apriori algorithm, hash trees, FP-tree,
interestingness

Hierarchical Association Rules
. Motivation, notions, algorithms, interestingness

Extensions and Summary
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Hierarchical Association Rules: Motivation

Problem of association rules in plain itemsets
High minsup: apriori finds only few rules
Low minsup: apriori finds unmanagably many rules

Exploit item taxonomies (generalizations, /s-a hierarchies) which
exist in many applications

clothes shoes
4/\
outerwear shirts sports shoes boots
/\
. ~ AN NN N
jackets jeans
ﬂ\ A

Task: find association rules between generalized items

Support for sets of item types (e.g., product groups) is higher than
support for sets of individual items
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Mining Multi-Level Associations

Example generalization hierarchy:

A top_down, progressive [35% | |1.5%] [wheat ]| white |

deepening approach:
First find high-level strong rules:
o milk — bread [20%, 60%].
Then find their lower-level “weaker” rules:
o 1.5% milk — wheat bread [6%, 50%].

| Fraser | | Sunset | | Wonder |

Variations at mining multiple-level association rules.
Level-crossed association rules:
o 1.5 % milk —» Wonder wheat bread
Association rules with multiple, alternative hierarchies:
o 1.5 % milk - Wonder bread
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Hierarchical Association Rules: Motivating
Example

Examples

jeans = boots } 5 ‘ .

. ort < mins
jackets = boots Hppor nsup
outerwear = boots Support > minsup
Characteristics

Support(“outerwear = boots”) is not necessarily equal to the
sum support(“jackets = boots”) + support( “jeans = boots”)

If the support of rule “outerwear = boots” exceeds minsup,
then the support of rule “clothes = boots” does, too
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Hierarchical Association Rules:
Basic Notions

[Srikant & Agrawal 1995]

Let U= {4, ..., i,,} be a universe of literals called items (basic items as
well as generalized items)
Let / be a directed acyclic graph defined as follows:
The universe of literals U forms the set of vertices in A
A pair (7, j) forms an edge in A if / is a generalization of j
o / is called parent or direct ancestor of j
o j is called a child or a direct descendant of 7
x"is an ancestor of x and, thus, x is a descendant of x" wrt. 4, if there
is a path from x" to x in A

A set of items 7' is called an ancestor of a set of items z if at least one
item in Z" is an ancestor of an item in z
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Hierarchical Association Rules:

Basic Notions (2)

Let Dbe a set of transaction 7 with 7< U
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Hierarchical Association Rules:
Basic Notions (3)

Hierarchical association rule

. Typically, transactions 7 in D only contain items from the leaves c X=2YwithXcUYcUXNY =0

of graph A

A transaction 7 supports an item i € U if jor any descendant of / is

contained in 7

No item in Y is ancestor of an item in X wrt. #
(i.e., avoid rules X = ancestor(X) where always conf. = 100%)

A transaction 7 supports a set X< U of items if 7 supports each item

in X

Support of a set X< U of items in D:

Percentage of transactions in D that contain X as a subset

RWTH Aachen, Informatik 9, Prof. Seidl

Hierarchical Association Rules:

Example

transaction id

1

o s wWwN

Support of {clothes}: 4 of 6 = 67%

items

shirt
jacket, boots
jeans, boots
sports shoes
sports shoes

jacket

Support of {clothes, boots}: 2 of 6 = 33%

~shoes = clothes": support 33%, confidence 50%
~boots = clothes™: support 33%, confidence 100%

Support of a hierarchical association rule X = Y in D:
. Support of theset X U Y in D

Confidence of a hierarchical association rule X = Y in D:

Percentage of transactions that support Y among the subset of
transactions that support X
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Determination of Frequent Itemsets:
Basic Algorithm for Hierarchical Rules

Idea: Extend the transactions in the database by all the
ancestors of the items contained

Method:

. For all transactions ¢in the database
o Create an empty new transaction ¢'
o For each item 7 in ¢ insert / and all its ancestors wrt. Ain ¢'
o Avoid inserting duplicates
. Based on the new transactions t', find frequent
itemsets for simple association rules (e.g., by using the
apriori algorithm)
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Determination of Frequent Itemsets:
Optimization of Basic Algorithm

Precomputation of ancestors
. Additional data structure that holds the association of each item to
the list of its ancestors: item — list of successors
supports a more efficient access to the ancestors of an item

Filtering of new ancestors
. Add only ancestors to a transaction which occur in an element of
the candidate set C, of the current iteration
Example
o G, = {{clothes, shoes}}
o Substitute ,jacketABC" by ,clothes"
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Multi-level Association: Redundancy Filtering

Some rules may be redundant due to “ancestor” relationships between
items.

Example
milk = wheat bread [support = 8%, confidence = 70%]
1.5% milk = wheat bread [support = 2%, confidence = 72%]

We say the first rule is an ancestor of the second rule.

A rule is redundant if its support is close to the “expected” value,
based on the rule’s ancestor.
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Determination of Frequent Itemsets:
Optimization of Basic Algorithm (2)

Algorithm Cumulate: Exclude redundant itemsets
Let X be a A-itemset, 7 an item and /' an ancestor of /
- X={i/ .}
Support of X — {/'} = support of X
When generating candidates, X can be excluded

k-itemsets that contain an item 7/ and an ancestor /'of / as well
are not counted
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Multi-Level Mining: Progressive Deepening

A top-down, progressive deepening approach:
First mine high-level frequent items:
o milk (15%), bread (10%)
. Then mine their lower-level “weaker” frequent itemsets:
o 1.5% milk (5%), wheat bread (4%)

Different min_support threshold across multi-levels lead to different
algorithms:
If adopting the same min_support across multi-levels
o toss tif any of t's ancestors is infrequent.
If adopting reduced min_support at lower levels

» then examine only those descendents whose ancestor’s support is
frequent/non-negligible.
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Progressive Refinement of Data Mining Quality

Why progressive refinement?
. Mining operator can be expensive or cheap, fine or
rough
. Trade speed with quality: step-by-step refinement.
Superset coverage property:
. Preserve all the positive answers—allow a false positive
test but not a false negative test.
Two- or multi-step mining:
First apply rough/cheap operator (superset coverage)

. Then apply expensive algorithm on a substantially
reduced candidate set (Koperski & Han, SSD'95).
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Determination of Frequent Itemsets:
Stratification (2)

Example
C, = {{clothes, shoes}, {outerwear, shoes}, {jackets, shoes}}
. First, count the support for {clothes, shoes}
. Ohnly i; support exceeds minsup, count the support for {outerwear,
shoes

Notions

Depth of an itemset
o For itemsets X from a candidate set C, without direct ancestors in G

depth(X) =0
o For all other itemsets X in G
depth(X) = 1 + max {depth(X'), X'e C,is a parent of X}

. (G/): set of itemsets of depth n from C, 0 < n< maxdepth t
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Determination of Frequent Itemsets:
Stratification

Alternative to basic algorithm (i.e., to apriori algorithm)
Stratification. build layers from the sets of itemsets

Basic observation
. If itemset X~ does not have minimum support, and X" is an 5!
ancestor of X, then X does not have minimum support, too/l
XXy

Method )

For a given &, do not count all Aitemsets simultaneously
. Instead, count the more general itemsets first, and count the more
specialized itemsets only when required
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Determination of Frequent Itemsets:
Algorithm Stratify

Method
. Count the itemsets from C?
Remove all descendants of elements from (C2) that do not have

minimum support
o Count the remaining elements in (G)

0 .ua

Trade-off between number of itemsets for which support is counted
simultaneously and number of database scans

If |G| is small, then count candidates of depth (n, n+1, ..., t) at once
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Determination of Frequent Itemsets:
Stratification — Problems

Problem of algorithm Stratify

If many itemsets with small depth share the minimum support,
only few itemsets of a higher depth are excluded

Improvements of algorithm Stratify
Estimate the support of all itemsets in C, by using a sample

Let C; be the set of all itemsets for which the sample suggests
that all or at least all their ancestors in €, share the minimum
support

Determine the actual support of the itemsets in C; by a single
database scan

Remove all descendants of elements in C; that have a support
below the minimum support from the set C;* = G, - C;

Determine the support of the remaining itemsets in ;" in a
second database scan
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Progressive Refinement Mining of
Spatial Association Rules

Hierarchy of spatial relationship:
. “g_close_to": near_by, touch, intersect, contain, etc.
. First search for rough relationship and then refine it.
Two-step mining of spatial association:
. Step 1: rough spatial computation (as a filter)

o Using MBR or R-tree for rough estimation.
. Step2: Detailed spatial algorithm (as refinement)

o Apply only to those objects which have passed the rough
spatial association test (no less than min_support)
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Determination of Frequent Itemsets:
Stratification — Experiments

Test data
Supermarket data
o 548,000 items; item hierarchy with 4 levels; 1.5M transactions
Department store data
o 228,000 items; item hierarchy with 7 levels; 570,000 transactions

Results
Optimizations of algorithms cumulate and stratify can be combined
cumulate optimizations yield a strong efficiency improvement
Stratification yields a small additional benefit only
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Interestingness of Hierarchical
Association Rules — Notions clothes = shoes

jackets = shoes

Rule X" = Y’ is an ancestor of rule X = Y if:

Itemset X* is an ancestor of itemset X or itemset Y is an
ancestor of itemset Y

Rule X" = Y’ is a direct ancestor of rule X = Y in a set of rules if:
Rule X” = Y'is an ancestor of rule X = Y, and

. Thereis no rule X* = Y" such that X* = Y" is an ancestor of
X=Yand X" = Y’ is an ancestor of X* = Y"

A hierarchical association rule X = Y is called R-interesting if:
. There are no direct ancestors of X = Y or
. Actual support is larger than R times the expected support or

. Actual confidence is larger than R times the expected
confidence
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Interestingness of Hierarchical
Association Rules — Example
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Example Item Support
Let R=2 clothes 20
outerwear 10
jackets 4
No. rule support R-interesting?
1  clothes = shoes 10 yes: no ancestors

outerwear = shoes 9

3  jackets = shoes 4
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yes: Support >> R *
expected support (wrt. rule 1)

no: Support < R * expected
support (wrt. rule 2)
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Chapter 5: Mining Association Rules

Introduction

. Transaction databases, market basket data analysis

Simple Association Rules

Basic notions, apriori algorithm, hash trees, FP-tree,

interestingness

Hierarchical Association Rules

Motivation, notions, algorithms, interestingness

Extensions and Summary
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Hierarchical Association Rules —
How to Choose Minimum Support?

Uniform Support

outerwear

Jackets ; jeans

oo e '

Reduced Support
(Variable Support)

outerwear

T

jackets jeans
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minsup = 5 %

minsup =5 %

minsup = 5 %

minsup = 3 %
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Multi-Dimensional Association: Concepts

Single-dimensional rules:
o buys(X, “milk”) = buys(X, “bread”)

Multi-dimensional rules: > 2 dimensions or predicates

Inter-dimension association rules (0 repeated predicates)
o age(X,”19-25") A occupation(X,“student”) = buys(X,"coke")
hybrid-dimension association rules (repeated predicates)
o age(X,”19-25") A buys(X, “popcorn”) = buys(X, “coke”)

Categorical Attributes
. finite number of possible values, no ordering among values

Quantitative Attributes
numeric, implicit ordering among values
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Techniques for Mining
Multi-Dimensional Associations

Search for frequent 4-predicate set:
Example: {age, occupation, buys} is a 3-predicate set.
Techniques can be categorized by how age are treated.
1. Using static discretization of quantitative attributes

. Quantitative attributes are statically discretized by using
predefined concept hierarchies.

2. Quantitative association rules

. Quantitative attributes are dynamically discretized into
“bins”based on the distribution of the data.

3. Distance-based association rules

This is a dynamic discretization process that considers the
distance between data points.

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 5079

Summary

. Association rule mining

. probably the most significant contribution from the
database community in KDD

. A large number of papers have been published
- Many interesting issues have been explored
- An interesting research direction

. Association analysis in other types of data: spatial
data, multimedia data, time series data, etc.
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Why Is the Big Pie Still There?

From association to correlation and causal structure
analysis

Association does not necessarily imply correlation or causal

relationships
From intra-transaction association to inter-transaction
associations

E.g., break the barriers of transactions (Lu, et al. TOIS'99).
From association analysis to classification and clustering
analysis

E.g, clustering association rules
Constraint-based mining of associations
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What is Concept Description?

Descriptive vs. predictive data mining
. Descriptive mining: describes concepts or task-relevant
data sets in concise, summarative, informative,
discriminative forms
. Predictive mining: Based on data and analysis,
constructs models for the database, and predicts the
trend and properties of unknown data
Concept description:
. Characterization: provides a concise and succinct
summarization of the given collection of data
. Comparison (Discrimination): provides descriptions
comparing two or more collections of data
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Chapter 6: Concept Description and Generalization

What is concept description?

Descriptive statistical measures in large databases

Data generalization and summarization-based
characterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between
different classes

Summary
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Concept Description vs. OLAP

OLAP

. restricted to a small number of dimension
and measure types

. user-controlled process

Concept description

. can handle complex data types of the
attributes and their aggregations

. @ more automated process
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Concept Description vs.
Learning-from-example Paradigm

Difference in philosophies and basic assumptions

Positive and negative samples in learning-from-
example: positive used for generalization, negative -
for specialization

Positive samples only in data mining: hence
generalization-based, to drill-down backtrack the
generalization to a previous state

Difference in methods of generalizations
Machine learning generalizes on a tuple by tuple basis

Data mining generalizes on an attribute by attribute
basis (see attribute-oriented induction)

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 6007

Mining Data Dispersion Characteristics

Motivation

« To better understand the data: central tendency, variation and
spread

Data dispersion characteristics
« median, max, min, quantiles, outliers, variance, etc.

Numerical dimensions correspond to sorted intervals
« Data dispersion: analyzed with multiple granularities of precision
« Boxplot or quantile analysis on sorted intervals

= Dispersion analysis on computed measures

« Folding measures into numerical dimensions

« Boxplot or quantile analysis on the transformed cube
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Chapter 6: Concept Description and Generalization

What is concept description?
Descriptive statistical measures in large databases

Data generalization and summarization-based
characterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between
different classes

Summary
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Measuring the Central Tendency (1)

- Mean — (weighted) arithmetic mean  _ lzxi %, = WX,
nio Zi:lwf
= Median — a holistic measure
« Middle value if odd number of values, or average of the middle two
values otherwise

« Estimate the median for grouped data by interpolation:

+ ”/2‘(Zf)zower c
nedian

L, — lowest value of the class containing the median
n— overall number of data values

median = L

Xf ower— SUM of the frequencies of all classes that are lower than the median
Foedian — frequency of the median class L (estim. of median
¢ — size of the median class interval | ]{l ,f

I I
Z f/ower ]fnedian
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Measuring the Central Tendency (2) Measuring the Dispersion of Data

= Mode = Quartiles, outliers and boxplots
« Value that occurs most frequently in the data  Quartiles: Q, (25" percentile), Q; (75 percentile)
« Well suited for categorical (i.e., non-numeric) data . Inter-quartile range: IQR = Q;—Q,

« Unimodal, bimodal, trimodal, ...: there are 1, 2, 3, ... modes in
the data (multimodal in general), cf. mixture models

« There is no mode if each data value occurs only once

« Five number summary: min, Q;, median, Q;, max
« Boxplot (next slide): ends of the box are the quartiles, median is

- ) marked, whiskers ; plot outlier individually
’ Eqn;sg;g?g; ;nlgg\lvaego:r unimodal frequency curves that are « Outlier: usually, values that are more than 1.5 x IQR below Q,
mean— mode ~ 3 - (mean— medjan) or above Q
= Midrange
« Average of the largest and the smallest values in a data set: = Variance and standard deviation |
(max— min) | 2 « Variance (algebraic, scalable computation): o* = mz; (x,-x)
« Standard deviation o: square root of variance
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Boxplot Analysis Boxplot Examples
Five-number summary of a distribution Unitprice($) ¢+
Minimum, Q1, Median, Q3, Maximum 800 T LS T
= 0%, 25%, 50%, 75%, 100%-quantiles (“25-percentile”, etc.) 700 T =g /i '
60.0 T R
Boxplot cyn max 500 |
. Data is represented with a box Q T median
. The ends of the box are at the first and third %00 T :
quartiles, i.e., the height of the box is IQR median 300 4 250/? i L
. The median is marked by a line within the box 200 | : oot
Whiskers: two lines outside the box extend to : Q 100 | -mini
Minimum and Maximum | _ + R
Ll min 0.0 L Product A Product B Product C
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Visualization of Data Dispersion:
Boxplot Analysis

revenue
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Histogram Analysis

- Graph displays of basic statistical class descriptions

. Frequency histograms
o A univariate graphical method

o Consists of a set of rectangles that reflect the counts
(frequencies) of the classes present in the given data

Kl

Al

<000

3000

2000 A

Sreqdency of teris
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Linit Price (§)
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Mining Descriptive Statistical Measures in
Large Databases

. 1 1
» alternatives: —, —
n-1n

- Variance

May be computed in a single pass!
1 , 1
= Z X =~ (Z Xi )z
Requires t;/\_/;)"p_z;éses but is

numerically much more stable

. Standard deviation: the square root of the variance
. Measures the spread around the mean
. Itis zero if and only if all the values are equal
. Both the deviation and the variance are algebraic
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Quantile Plot

- Displays all of the data (allowing the user to assess
both the overall behavior and unusual occurrences)

. Plots quantile information

The g-quantile x, indicates the value x, for which the fraction ¢
of all data is less than or equal to x; (called percentile if gis a
percentage); e.g., median = 50%-quantile or 50t percentile.
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Quantile-Quantile (Q-Q) Plot

Graphs the quantiles of one univariate distribution
against the corresponding quantiles of another

Allows the user to view whether there is a shift in going
from one distribution to another
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Loess Curve (local regression)

Adds a smooth curve to a scatter plot in order to
provide better perception of the pattern of dependence
Loess curve is fitted by setting two parameters: a
smoothing parameter, and the degree of the
polynomials that are fitted by the regression
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Scatter plot

Provides a first look at bivariate data to see clusters of
points, outliers, etc

Each pair of values is treated as a pair of coordinates and
plotted as points in the plane
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Chapter 6: Concept Description and Generalization

What is concept description?
Descriptive statistical measures in large databases

Data generalization and summarization-based
characterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between
different classes

Summary
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Data Generalization and Summarization-
based Characterization

Data generalization

. A process which abstracts a large set of task-relevant
data in a database from low conceptual levels to
higher ones.

Conceptual levels

g AW N~

. Approaches:
o Data cube approach (OLAP approach)
o Attribute-oriented induction approach
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Attribute-Oriented Induction

Proposed in 1989 (KDD ‘89 workshop)
Not confined to categorical data nor particular measures.
How is it done?

. Collect the task-relevant data (/nitial relation) using a
relational database query.

. Perform generalization by either attribute removal or
attribute generalization.

. Apply aggregation by merging identical, generalized
tuples and accumulating their respective counts.

. Interactive presentation with users.
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Characterization: Data Cube Approach
(without using AO-Induction)

Perform computations and store results in data cubes
Strength
. An efficient implementation of data generalization
. Computation of various kinds of measures
o €.g., count( ), sum( ), average( ), max( )

. Generalization and specialization can be performed on a data
cube by roll-up and drill-down

Limitations

. handle only dimensions of simple nonnumeric data and
measures of simple aggregated numeric values.

. Lack of intelligent analysis, can't tell which dimensions should
be used and what levels should the generalization reach
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Attribute-Oriented Induction: Basic Principles

Data focusing: task-relevant data, including dimensions,
and the result is the initial relation.

. Attribute-removal: remove attribute A if

1) there is a large set of distinct values for A but there is
no generalization operator (concept hierarchy) on A4, or

2) A’s higher level concepts are expressed in terms of
other attributes (e.g. street is covered by city,
province_or_state, country).

Attribute-generalization: if there is a large set of distinct
values for A4, and there exists a set of generalization
operators (i.e., a concept hierarchy) on A4, then select an
operator and generalize A.
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Attribute Generalization Control

- Problem: How many distinct values for an attribute?
. overgeneralization (values are too high-level) or
. undergeneralization (level not sufficiently high)
. both yield rules of poor usefulness.

. Two common approaches
. Attribute-threshold control:

default or user-specified, typically 2-8 values

. Generalized relation threshold control:
control the size of the final relation/rule, e.g., 10-30
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Example: Given Concept Hierarchies

name: all gender: all Phone #:all
no (real)
hierarchies ) rvbeck ... .\WWhite female male 158932............98763
all grade_point_ all
set grouping T avg.'/"\\
hierarchies age_range: 15-20 20-25 25-30 Excellent Very_good Good
AN S t r )

age.: 17 18 19 20 21 22 23 24 25 26 27 28 29

birth_place: all

schema
hierarchies N_America Asia Europe
Canada USA Germany France

Vancouver Toronto Aachen Munich

0.7.14 15.24 25.34

major:  all

N

arts & business engi-
sciences neering

/A AN

CS Math Physics EE Civil_eng.
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Attribute-Oriented Induction: Basic Algorithm

- InitialRelation: Query processing of task-relevant data, deriving

the /nitial working relation.

- PrepareForGeneralization (PreGen): Based on the analysis of the

number of distinct values in each attribute, determine
generalization plan for each attribute: removal? or generalization
to which level of abstraction in the concept hierarchy?

- PrimeGeneralization (PrimeGen): Based on the prepared plan,

perform generalization to the right level to derive a “prime
generalized relation”, accumulating the counts.

- Presentation: User interaction: (1) adjust levels by drilling, (2)

pivoting, (3) mapping into rules, cross tabs, visualization
presentations.
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Example: Initial Relation
.

Name Gender | Major | Birth-Place Birth_date| Residence Phone # GPA
Jim M CS Vancouver,BC,| 8-12-81 3511 Main St., | 687-4598 | 3.67
‘Woodman Canada Richmond
Scott M CS Montreal, Que,| 28-7-80 345 1st Ave., 253-9106 | 3.70
Lachance Canada Richmond
LauraLee | F Physics | Seattle, WA, USA| 25-8-75 125 Austin Ave., | 420-5232 | 3.83
. Burnaby
Removed Retained | Sci,Eng, | Country Age range | City Removed | Excl,

Bus VG,..

Name: large number of distinct values, no hierarchy—removed.
Gender: only two distinct values—retained.

Major: many values, hierarchy exists—generalized to Sci.,Eng.,Bus.
Birth_place: many values, hierarchy—generalized, e.g., to country.
Birth_date: many values—generalized to age (or age_range).
Residence.: many streets and numbers—generalized to city.

Phone number: many values, no hierarchy—removed.
Grade_point_avg (GPA): hierarchy exists—generalized to good....
Count. additional attribute to aggregate base tuples
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Attribute-oriented Induction-Implementation(1) Attribute-oriented Induction-Implementation(2)

Procedure PrepareForGeneralization (W)

Input parameters
. Scan working relation Wand collect the distinct values for each

. DB — a relational database

o attribute g;
: DMQuery—a d_ata mlnln_g query o If Wis very large, a sample of W may be used instead.
. Attributes — a list of attributes g, . For each attribute a,
Generalization(a,)— a set of concept hierarchies or » Determine whether a, should be removed
generalization operators on attributes g, o If not, compute the minimum desired level £, based on the
. AttributeGeneralizationThreshola(a,) — attribute attribute threshold, and determine the mapping-pairs (v, v') for
generalization thresholds for each g, distinct values vof a;in A and the corresponding generalized

Output parameters values v'at level L,

. P —a prime generalized relation
Procedure InitialRelation (DMQuery, DB)
. Fetch the task-relevant data into I, the working relation.
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Attribute-oriented Induction-Implementation(3) Order of Attribute Selection

Procedure PrimeGeneralization (W)

. Derive the prime_generalized_relation P by replacing each
value vin W by the corresponding v'in the mapping while
maintaining count (and other aggregate values, if any).

. Depending on the number of distinct values at the prime \
relation level, Pcan be coded as a sorted relation or as a ‘

Strategies to select the next attribute for generalization
Aiming at minimal degree of generalization

. Choose attribute that reduces the number of tuples the most.

. Useful heuristics: choose attribute a; with highest number m; of
distinct values.

multidimensional array. - Aiming at similar degree of generalization for all
attributes
Variation of the algorithm [Han, Cai & Cercone 1993] . Choose the attribute currently having the least degree of
. Rather than performing PrepareForGeneralization and generalization
PrimeGeneralization in a sequence, the prime relation P . User-controlled

cag be IE pda_tt()a d for ?acl‘_l attribute selecltlﬁn step. Then, the . Domain experts may specify appropriate priorities for the
order of attribute selection may control the process. selection of attributes
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Presentation of Generalized Results

Generalized relation

Relations where some or all attributes are generalized, with counts
or other aggregation values accumulated.

Cross tabulation

Mapping results into cross tabulation form.
Visualization techniques

Pie charts, bar charts, curves, cubes, and other visual forms.
Quantitative characteristic rules

Mapping generalized result into characteristic rules with quantitative
information associated with it, e.g., £ typicality weight

grad (x) Amale(x) = F (see next slide)
birth _region(x)="Canada"[t:53%] v
birth _region(x)="foreign"[t:47%].
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Presentation—Generalized Relation

Example: A generalized relation for the sales in 2002

Location Item Sales Count
(in million $) | (in thousands)

Asia TV 15 300

Europe TV 12 250
North_America TV 28 450

Asia Computer 120 1000

Europe Computer 150 1200
North_America computer 200 1800
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Quantitative Characteristic Rules

Typicality weight (t_weight) of the disjuncts in a rule
. {q, ..., g,): generalized tuples that represent the target class

t_weight: fraction of tuples representing the target class in initial
relation covered by a single generalized tuple g,

. definition: ¢ weight (g,)= ncount (¢.)

count (q [)
range is [0...1] Z::‘
Form of a Quantitative Characteristic Rule: (cf. crosstab)
VX, target class(X) =
condition, (X) [t : wl] v ... v condition (X) [t : wm]

Disjunction represents a necessary condition of the target class

Not sufficient: a tuple that meets the conditions could belong to
another class
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Presentation—Crosstab

Example: A crosstab for the sales in 2002

Location \ item | TV Computer Both_items

sales |count |sales |count |sales count

Asia 15 300 120 1000 |135 300
Europe 12 250 150 1200 |[162 1450
North_America |28 450 200 1800 |228 250

all_regions |45 470 525 | 5000

count corresponds to £ WM
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Example: Generalized Relation
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Name Gender |Major |Birth-Place Birth_date | Residence Phone # GPA
Jim Woodman | M CS Vancouver, BC, |8-12-81 3511 Main St., | 687-4598 [3.67
TInitial Canada Richmond
Relation Scott Lachance | M CS Montreal, Que, |28-7-80 3{&5 1st Ave., |253-9106 |3.70
Canada Richmond
Laura Lee F Physics | Seattle, WA, 25-8-75 125 Austin 420-5232 |3.83
USA Ave., Burnaby
Removed Retained | Sci,Eng, | Country Agerange | City Removed |Excl,
Bus VG...
. Gender | Major Birth_region | Age range |Residence |GPA Count
PGrlme i M Science Canada 20-25 Richmond Very-good 16
enera ized F Science Foreign 25-30 Burnaby Excellent 22
Relation -
irth_Region
Crosstab for Canada Foreign Total
Generalized Gender
Relation M 16 14 30
F 10 22 32
Total 26 36 62
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Incremental Generalization

Database update: R, = Ryg U AR

Incremental Mining: update generalized relations (small) directly
without applying generalization to R, (large)

“ n

Rgenold Rgennew

]
bt
]

Requirements
Efficiency: significantly faster update of generalized relations
Correctness: update(generalize(R)) = generalize(update(R))
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AOI: Implementation by Cube Technology

Alternative Approaches:

. Construct a data cube on-the-fly for the given data
mining query
Facilitate efficient drill-down analysis
May increase the response time
A balanced solution: precomputation of “subprime” relation

- Use a predefined & precomputed data cube
Construct a data cube beforehand

Facilitate not only the attribute-oriented induction, but also
attribute relevance analysis, dicing, slicing, roll-up and drill-down

Cost of cube computation and the nontrivial storage overhead
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Incremental Generalization—Algorithms

Insertion of new tuples

Generalize AR to the same level of abstraction as in the
generalized relation R, to derive ARy,

Union Ry, U A Ry, i.€., merge counts and other statistical
information to produce a new relation R,

If relation threshold (i.e., # tuples) is exceeded, further apply
the attribute-oriented generalization to R,

Deletion of tuples

Generalize AR to the same level of abstraction in the generalized
relation Ry, to derive AR,

Remove AR, from R, i.€., decrease counts and maintain
other statistical information to produce Ry,

Relation threshold is ok but overgeneralization may occur
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Incremental Generalization—
Problem of Overgeneralization

Overgeneralization. incremental deletion yields a higher level
of abstraction than generalizing the updated base relation.

Example

Name | Gender |Age

Ann Female |47 Gender | Age_Range | Count
Ben Male 45 (Ber?erzml"nztli 45) > Female | Mid_aged |2
Clara Female |48 ' / Male Senior 1

Dan Male 62

#!

Age_range | Count Delete Age_Range | Count
Mid_aged 3 (mid_aged, 1) Mid_aged 2
1 Senior 1

Senior
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Chapter 6: Concept Description and Generalization

What is concept description?
Descriptive statistical measures in large databases

Data generalization and summarization-based
characterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between
different classes

Summary
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Incremental Generalization—Anchor Relation

Approach to prevent from overgeneralization

. Use an intermediate anchor relation, i.e., an relation that is
generalized to an level of abstraction below the desired final
level of abstraction.

Procedure

. Generalize updates AR to the level of the anchor relation

- Apply the generalized updates AR, to the anchor relation
. Generalize the updated anchor relation to the final level

— - -
Base relation | | P1mary Anenor
generalization relation pdate
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Characterization vs. OLAP

= Shared concepts:

» Presentation of data summarization at multiple levels of
abstraction.

« Interactive drilling, pivoting, slicing and dicing.
= Differences:
» Automated desired level allocation.

« Dimension relevance analysis and ranking when there
are many relevant dimensions.

 Sophisticated typing on dimensions and measures.
« Analytical characterization: data dispeision analysis.
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Attribute Relevance Analysis Attribute relevance analysis (cont'd)

Why?—Support for specifying generalization parameters - How?—Steps of the algorithm:
. Which dimensions should be included?
. How high level of generalization?

. Automatic vs. interactive

. Data Collection
. Analytical Generalization

. Reduce number of attributes o Use information gain analysis (e.g., entropy or other
- easy to understand patterns / rules measures) to identify highly relevant dimensions and levels.
What?—Purpose of the method . Relevance Analysis
- statistical method for preprocessing data o Sort and select the most relevant dimensions and levels.

o filter out irrelevant or weakly relevant attributes . ) . .
. retain or rank the relevant attributes . Attribute-oriented Induction for class description

. relevance related to dimensions and levels o On selected dimension/level
. analytical characterization, analytical comparison
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Relevance Measures Information-Theoretic Approach
- Quantitative relevance measure determines the - Decision tree

Classifying power of an attribute within a set of data. . each internal node tests an attribute

. each branch corresponds to attribute value

Competing methods . each leaf node assigns a classification
. information gain (ID3) — discussed here

. gain ratio (C4.5)

. gini index (IBM Intelligent Miner)
. %2 contingency table statistics

. uncertainty coefficient

ID3 algorithm

. build decision tree based on training objects with
known class labels to classify testing objects

. rank attributes with information gain measure
. minimal height
o the least number of tests to classify an object
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Top-Down Induction of Decision Tree Entropy and Information Gain
Attributes = {Outlook, Temperature, Humidity, Wind} . Scontains s;tuples of class C for /={1, ..., m}
PlayTennis = {yes, no} . Information measures info required to classify any
arbitrary tuple .
S. S.
1(8,,S,5,...,8,) = —Z—’logz—‘
i=1 S N

Entropy of attribute A with values {a,, &, ..., a}
VoSt e+
E(A) = z S1 S
j=1
Information gained by branching on attribute A
Gain( 4) = 1(s,,8,,...,5,)— E(A4)

i L(S)j50er S,)
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Example: Analytical Characterization Example: Analytical Characterization (2)
- Task - Step 1: Data collection
- Mine general characteristics describing graduate . target class: graduate student
students using analytical characterization . contrasting class: undergraduate student

Step 2: Analytical generalization using thresholds U,

. attribute removal
o remove name and phone#

. . . . attribute generalization
. generalization(a,) = concept hierarchies on a; a
g ( J P ! o generalize major, birth_place, birth_date, gpa

. U; = attribute analytical thresholds for a; . accumulate counts
. R = attribute relevance threshold . candidate relation

77' = attl‘lbute genera“zat'on thl‘eSh0|dS for a/- o gende/; majo,; b//fh_countfy/ age_range, gpa

Given

. attributes name, gender, major, birth_place,
birth_date, phone#, gpa
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Example: Analytical characterization (3)

gender | major birth_country | age range |gpa count
M Science Canada 20-25 Very good |16
F Science Foreign 25-30 Excellent 22
M Engineering | Foreign 25-30 Excellent 18
F Science Foreign 25-30 Excellent 25
M Science Canada 20-25 Excellent 21
F Engineering | Canada 20-25 Excellent 18

Candidate relation for Target class: Graduate students (2=120)

gender | major birth_country |age range |gpa count
M Science Foreign <20 Very good |18
F Business Canada <20 Fair 20
M Business Canada <20 Fair 22
F Science Canada 20-25 Fair 24
M Engineering | Foreign 20-25 Very _good |22
F Engineering | Canada <20 Excellent 24

Candidate relation for Contrasting class: Undergraduate students (2=130)
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Example: Analytical Characterization (5)

. Calculate expected info required to classify a given
sample if Sis partitioned according to the attribute

. 126 82 42
E(major) = ﬁl(s”,sﬂ)+ﬁ1(s]2,szz) +ﬁl(s13,s23) =0.7873

. Calculate information gain for each attribute
Gain(major) = I(s,,s,) — E(major) =0.2115

Information gain for all attributes

Gain(gender) = 0.0003
Gain(birth_country) = 0.0407
Gain(major) =0.2115
Gain(gpa) = 0.4490

Gain(age_range) = 0.5971
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Example: Analytical Characterization (4)

. Step 3: Relevance analysis

. Calculate expected info required to classify an
arbitrary tuple
120, 120 130 130

I(s,,s,) = 1(120,130) = ———

og, 129 130,00 130 9988
250 22250 250 22250

. Calculate entropy of each attribute: e.qg. major
For major="5cience” I(s41, S»1)=0.9183
For major="Engineering” /s,,=36 $,,=46 |I(S;,, S,,)=0.9892
For major="Business”, 513=0  5,3=42 |I(S43, S,3)=0

Number of grad Number of undergrad
students in “Science” students in “Science”
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Example: Analytical Characterization (6)

Step 4a: Derive initial working relation W,
Use attribute relevance threshold R e.g., R=0.1

remove irrelevant/weakly relevant attributes (gain < R) from
candidate relation, i.e., drop gender, birth_country

remove contrasting class candidate relation

major age_range | gpa count
Science 20-25 Very_good | 16
Science 25-30 Excellent 47
Science 20-25 Excellent 21
Engineering | 20-25 Excellent 18
Engineering | 25-30 Excellent 18

Initial target class working relation W : Graduate students

Step 4b: Perform attribute-oriented induction using thresholds 7;
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Chapter 6: Concept Description and Generalization

What is concept description?
Descriptive statistical measures in large databases

Data generalization and summarization-based
characterization

Analytical characterization: Analysis of attribute relevance

Mining class comparisons: Discriminating between
different classes

Summary
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Example: Analytical comparison (2)

Task

. Compare graduate and undergraduate students using discriminant
rule.

Given

. attributes name, gender, major, birth_place, birth_date, residence,
phone#, gpa

. generalization(a) = concept hierarchies on attributes g,
U = attribute analytical thresholds for attributes a;
R = attribute relevance threshold
7. = attribute generalization thresholds for attributes a,
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Mining Class Comparisons

Comparison
« Comparing two or more classes.

Relevance Analysis
« Find attributes (features) which best distinguish different classes.

Method

Partition the set of relevant data into the target class and the
contrasting class(es)

. Analyze the attribute’s relevances
. Generalize both classes to the same high level concepts
. Compare tuples with the same high level descriptions

Present the results and highlight the tuples with strong
discriminant features
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Example: Analytical comparison (3)

Step1: Data collection
. target and contrasting classes

Step 2: Attribute relevance analysis
. remove attributes name, gender, major, phone#

Step 3: Synchronous generalization
. controlled by user-specified dimension thresholds
. prime target and contrasting class(es) relations/cuboids
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Example: Analytical comparison (4)

birth_country age_range | Gpa count%
Canada 20-25 Good 5.53%
Canada 25-30 Good 2.32%
Canada over_30 Very_good 5.86%
Other over_30 Excellent 4.68%

Prime generalized relation for the target class: Graduate students

birth_country age_range | Gpa count%
Canada 15-20 Fair 5.53%
Canada 15-20 Good 4.53%
Canada 25-30 Good 5.02%
Other over_30 Excellent 0.68%

Prime generalized relation for the contrasting class: Undergraduate students
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Quantitative Discriminant Rules
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- G = target class

.- g, = a generalized tuple covers some tuples of class
but can also cover some tuples of any contrasting class C

- Discrimination weight (d_weight)
m classes G

t C. target class
definition:  d _weight ( a,Cj): count (g, < J)

Z count (qa € C,.)
range: [0, 1] i=1

high d_weight: g, primarily represents a target class concept
low d weight: g, is primarily derived from contrasting classes

contrasting
classes

- Form of a Quantitative Discriminant Rule:

VX ,target_cla ss(X )< condition (X) [d:d_weight ]
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Example: Analytical comparison (5)

. Step 4: Compare tuples; drill down, roll up and other OLAP
operations on target and contrasting classes to adjust
levels of abstractions of resulting description.

- Step 5: Presentation

. as generalized relations, crosstabs, bar charts, pie
charts, or rules

. contrasting measures to reflect comparison between
target and contrasting classes
o €.g. count%
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Example: Quantitative Discriminant Rule

Status Birth_country | Age_range Gpa Count
Graduate Canada 25-30 Good 90
Undergraduate Canada 25-30 Good 210

Count distribution between graduate and undergraduate students for a generalized tuple

- Quantitative discriminant rule
VX, graduate student(X) <= birth_country(X) = ‘Canada’ A
age range(X) =’25-30" A
gpa(X) = ‘good’ [d: 30%]
d _weijght = 90/(90+210) = 30%

Rule is sufficient (but not necessary):

o if Xfulfills the condition, the probability that X'is a graduate student
is 30%, but not vice versa, i.e., there are other grad studs, too.
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Discriminant weight vs. Typicality weight

grad(x) Amale(x) =
birth _region(x)="Canada"[t:53%)] v
birth _region(x)="foreign"[t:47%)].

Quantitative characteristic rules
necessary condition of target class

t_weight: fraction of tuples representing the target class in |n|t|at rglation
covered by a single generalized tuple g, t_weight (¢,)=———"*—
z count (q,)

Example: percentage of all male grad students born in Canada is 53%,
percentage of male grad students born in foreign countries is 47%

vX, graduate_student(X) <

g .. birth_country(X) = ‘Canada’
Quantitative Discriminant Rules age__range(/\g(:) 25-30" ’

Rule is sufficient gpa(X) = good’ [d: 30%]
d_weight: a generalized tuple covers some tuples of target class, but can
also cover some tuples of contrasting class d_weight (,,C )= — _count{g, €C,)
Example: those born in Canada, between 25 and 30 years old, ZC"“‘“ 4.<C)

and “good” gpa have a 30% probability of being a grad student
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Example: Quantitative Description Rule

Location/item

Count | t-wt d-wt Count | t-wt d-wt Count | t-wt d-wt
Europe 80 25% 40% | 240 75% 30% | 320 100% 32%
N_Am 120 17.65% | 60% | 560 82.35% 70% | 680 100% 68%
Both_ 200 20% 100% | 800 80% 100% | 1000 | 100% 100%
regions

Crosstab showing associated t-weight, d-weight values and total number
(count, in thousands) of TVs and computers sold at AllElectronics in 1998

- Quantitative description rule for target class Europe

Vv X, Europe(X) <
(item(X)="TV") [t:25%,d : 40%] Vv (item(X)="computer") [t : 75%,d : 30%]
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Class Description

Quantitative characteristic rule (necessary)
VX, target class(X ) = condition, (X ) [t:w1 ]v ...V condition,, (X ) [t.'wm]

Quantitative discriminant rule (sufficient)
VX, target_class(X) < condition (X )[d:w]]v ...\ condition, (X ) [d:w!, ]

Quantitative description rule (necessary and sufficient)
VX, target class(X) <
<condition1(X)[t.'wl,d.'wl'] V ... Vv condition ( tw,,d: wm]>

@e Normal Form: Each condition in the disjunction (v)
may be a conjunction (A) with no more disjunctions inside
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Chapter 6: Concept Description and Generalization

- What is concept description?
. Descriptive statistical measures in large databases

. Data generalization and summarization-based
characterization

. Analytical characterization: Analysis of attribute relevance

. Mining class comparisons: Discriminating between
different classes

- Summary
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Mining Complex Data Objects:
Generalization of Structured Data

Set-valued attribute

- Generalization of each value in the set into its
corresponding higher-level concepts

. Derivation of the general behavior of the set, such
as the number of elements in the set, the types or
value ranges in the set, or the weighted average
for numerical data

. E.g., hobby = {tennis, hockey, chess, violin,
nintendo_games} generalizes to {sports, music,
video_games}

List-valued or a sequence-valued attribute

. Same as set-valued attributes except that the order
of the elements in the sequence should be
observed in the generalization
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Chapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of
complex data objects

Mining text databases
Mining the World-Wide Web

Summary
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Generalizing Spatial and Multimedia Data

Spatial data:

Generalize detailed geographic points into clustered regions,
such as business, residential, industrial, or agricultural areas,
according to land usage

Require the merge of a set of geographic areas by spatial
operations

Image data:
. Extracted by aggregation and/or approximation

. Size, color, shape, texture, orientation, and relative positions
and structures of the contained objects or regions in the image

Music data:

. Summarize its melody: based on the approximate patterns that
repeatedly occur in the segment

. Summarized its style: based on its tone, tempo, or the major
musical instruments played
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Chapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of
complex data objects

Mining text databases
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Summary
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Information Retrieval

- Typical IR systems
. Online library catalogs
. Online document management systems
Information retrieval vs. database systems

. Some DB problems are not present in IR, e.g., update,
transaction management, complex objects

. Some IR problems are not addressed well in DBMS,
e.g., unstructured documents, approximate search
using keywords and relevance
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Text Databases and IR

. Text databases (document databases)

. Large collections of documents from various sources:
news articles, research papers, books, digital libraries,
e-mail messages, and Web pages, library database, etc.

. Data stored is usually semi-structured (Bsp. XML)

. Traditional information retrieval techniques become
:jnadequate for the increasingly vast amounts of text
ata

Information retrieval
. A field developed in parallel with database systems

. Information is organized into (a large number of)
documents

. Information retrieval problem: locating relevant
documents based on user input, such as keywords or
example documents
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Basic Measures for Text Retrieval 7« fm@m(

(}emrw( ‘W”w
Relevant Rclcvam & Retdeved
. documents Rcmmcd documents

All docurments

Precision: the percentage of retrieved documents that are
in fact relevant to the query (i.e., “correct” responses)
| {Relevant} N {Retrieved} |
| {Retrieved} |

Recall: the percentage of documents that are relevant to
the query and were, in fact, retrieved
| {Relevant} " {Retrieved} |

| {Relevant} |

pl"€ClSl01’Z =

recall =
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Keyword-Based Retrieval

A document is represented by a string, which can be
identified by a set of keywords
Queries may use expressions of keywords
. E.g., car andrepair shop, tea or coffee, DBMS but
not Oracle
. Queries and retrieval should consider synonyms,
e.g., repair and maintenance
Major difficulties of the model
. Synonymy: A keyword 7 does not appear anywhere
in the document, even though the document is
closely related to 7, e.g., data mining
. Polysemy: The same keyword may mean different
things in different contexts, e.g., mining
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Similarity-Based Retrieval in Text Databases (2)

. Aterm frequency table
o Each entry frequent_table(i, j) = # of occurrences of the
word £ in document d;
o Usually, the ratio instead of the absolute number of
occurrences is used
Similarity metrics: measure the closeness of a document to a
query (a set of keywords)

o Relative term occurrences Ja
o Cosine distance: J “L
Vi, vo) = vi| - [vy] - cos(vy, v,) 8
Nl
v
(vi,v2)
o o 9 172
similarity(v,,v,) = ~——=L
v v, |
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Similarity-Based Retrieval in Text Databases

Finds similar documents based on a set of common keywords
Answer should be based on the degree of relevance based on the
nearness of the keywords, relative frequency of the keywords, etc.
Basic techniques
Stop list
o Set of words that are deemed “irrelevant”, even though they may
appear frequently
o E.g., a, the, of, for, with, etc.
o Stop lists may vary when document set varies
. Word stem

o Several words are small syntactic variants of each other since they
share a common word stem

o E.g., drug, drugs, drugged
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g
: : ok b L
Latent Semantic Indexing <" -
- —~ =
Basic idea -
Similar documents have similar word frequencies -

Difficulty: the size of the term frequency matrix is very large

Use a singular value decomposition (SVD = PCA = KLT) technique
to reduce the size of frequency table (reduction of dimensionality)

Retain the A'most significant rows of the frequency table
Method
Create a term frequency matrix, freq_matrix
SVD construction: Compute the singular valued decomposition of
freq_matrix F by splitting it into 3 matrices, F=U-S-V, V-V = Id
. Vector identification: For each document g, replace its original
document vector by a new excluding the eliminated terms

Index creation: Store the set of all vectors, indexed by one of a
number of techniques (such as TV-tree)
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Other Text Retrieval Indexing Techniques

Inverted index
Maintains two hash- or B+-tree indexed tables:

o a posting represents the occurrence of a term 7 in a document ¢
i.e. a posting is a link object in the m.n-relationship term-documents

o document_table: a set of document records <doc_id, postings_list>

o term_table: a set of term records, <term, postings_list>

o In SQL: index on (doc_id, term) and index on (term, doc id)
Answer query: Find all docs associated with one or a set of terms
Advantage: easy to implement

Disadvantage: do not handle well synonymy and polysemy, and
posting lists could be too long (storage could be very large)

Signature file
Associate a signature with each document

A signature is a representation of an ordered list of terms that
describe the document

Order is obtained by frequency analysis, stemming and stop lists
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Keyword-based association analysis

. Collect sets of keywords or terms that occur frequently
to<r:1ether and then find the association or correlation
relationships among them

- First preprocess the text data by parsing, stemming,
removing stop words, etc.

. Then evoke association mining algorithms
. Consider each document as a transaction

. View a set of keywords in the document as a set of
items in the transaction

. Term level association mining
. No need for human effort in tagging documents

. The number of meaningless results and the execution
time is greatly reduced
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Types of Text Data Mining

Keyword-based association analysis
Automatic document classification
Similarity detection

Cluster documents by a common author

Cluster documents containing information from a common source
Link analysis: unusual correlation between entities
Sequence analysis: predicting a recurring event
Anomaly detection: find information that violates usual patterns
Hypertext analysis

Patterns in anchors/links

o Anchor text correlations with linked objects
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Automatic document classification

Motivation

Automatic classification for the tremendous number of on-line text
documents (Web pages, emails, etc.)

A classification problem
Training set: Human experts generate a training data set
Classification: The computer system discovers the classification
rules
Application: The discovered rules can be applied to classify
new/unknown documents
Text document classification differs from the classification of relational
data
Document databases are not structured according to attribute-
value pairs
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Association-Based Document Classification

Extract keywords and terms by information retrieval and simple
association analysis techniques

Obtain concept hierarchies of keywords and terms using
. Available term classes, such as WordNet
Expert knowledge
Some keyword classification systems
Classify documents in the training set into class hierarchies

Apply term association mining method to discover sets of
associated terms

Use the terms to maximally distinguish one class of documents
from others

Derive a set of association rules associated with each document
class

Order the classification rules based on their occurrence frequency
and discriminative power

Used the rules to classify new documents
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Chapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of
complex data objects

Mining text databases
Mining the World-Wide Web

Summary
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Document Clustering

Automatically group related documents based on their
contents

Require no training sets or predetermined taxonomies,
generate a taxonomy at runtime

Major steps

. Preprocessing

- Remove stop words, stem, feature extraction, lexical
analysis, ...

. Hierarchical clustering
o Compute similarities applying clustering algorithms, ...

. Slicing
» Fan out controls, flatten the tree to configurable number of
levels, ...
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Mining the World-Wide Web

The WWW is huge, widely distributed, global information
service center for

. Information services: news, advertisements, consumer
information, financial management, education,
government, e-commerce, etc. (content)

. Hyper-link information (structure)

. Access and usage information (usage)

WWW provides rich sources for data mining

Challenges

- Too huge for effective data warehousing and data
mining

. Too complex and heterogeneous: no standards and
structure
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Mining the World-Wide Web

Growing and changing very rapidly
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Broad diversity of user communities

Only a small portion of the information on the Web is truly relevant or
useful

. 99% of the Web information is useless to 99% of Web users
How can we find high-quality Web pages on a specified topic?

Sps

i
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Web Mining: A more challenging task

Searches for

. Web access patterns

. Web structures

. Regularity and dynamics of Web contents
Problems

. The “abundance” (Uberfiuss) problem

. Limited coverage of the Web: hidden Web sources,
majority of data in DBMS

. Limited query interface based on keyword-oriented
search

. Limited customization to individual users
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Web search engines

Index-based: search the Web, index Web pages, and
build and store huge keyword-based indices

Help locate sets of Web pages containing certain
keywords

Deficiencies

. A topic of any breadth may easily contain hundreds of
thousands of documents

. Many documents that are highly relevant to a topic
may not contain keywords defining them (polysemy)
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Web Mining Taxonomy

Web Mining

Web Content Web Structure Web Usage
Mining Mining Mining

Web Page Search Result General Access Customized
Content Mining Mining Pattern Tracking Usage Tracking
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Mining the World-Wide Web

Web Mining
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Web Content
Mining Mining

Web Structure

Web Usage
Mining

Web Page Content Mining

Web Page Summarization

WebLog (Lakshmanan et.al. 1996), WebOQL
(Mendelzon et.al. 1998) ...: Web Structuring
query languages; can identify information

within given web pages

Ahoy! (Etzioni et.al. 1997): Uses heuristics to
distinguish personal home pages from other

web pages

ShopBot (Etzioni et.al. 1997): Looks for product

prices within web pages

Mining

Search Result
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Mining the World-Wide Web

Web Mining

Web Content
Mining Mining
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Web Structure

Web Usage
Mining

Search Result Mining

Customized
Usage Tracking

Web Page
Content Mining

Search Engine Result

General Access
Pattern Tracking
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Mining the World-Wide Web

Web Content
Mining

Web Page
Content Mining

Web Mining
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Search Result
Mining

Web Structure Mining

Using Links
PageRank (Brin et al. 1998)
CLEVER (Chakrabarti et al. 1998)

Use interconnections between web

pages to give weights to pages.

Mining

Web Usage

Customized
Usage Tracking

Summarization

Clustering Search Result
(Leouski & Croft 1996, Zamir &
Etzioni 1997):

Categorizes documents using
phrases in titles and snippets
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Mining the World-Wide Web

Web Mining

Customized
Usage Tracking

General Access
Pattern Tracking
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Using Generalization

MLDB (1994), VWV (1998)

Uses a multi-level database
representation of the Web.
Counters (popularity) and link lists
are used for capturing structure.

General Access
Pattern Tracking

Web Content Web Structure Web Usage
Mining Mining Mining
Web Page - -
Content Mining General Access Pattern Tracking Customlzeq
Usage Tracking

Search Result

Mining

Web Log Mining (Zaiane, Xin, Han 1998):

Uses KDD techniques to understand
general access patterns and trends.

Can shed light on better structure and

grouping of resource providers.




RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 7029

Mining the World-Wide Web

Web Mining

Web Content Web Structure Web Usage
Mining Mining Mining
Web Page General Access Customized Usage Tracking
Content Mining Pattern Tracking
Adaptive Sites (Perkowitz & Etzioni 1997):
Search Result Analyzes access patterns of each user at
Mining a time; Web site restructures itself auto-
matically by learning from user access
patterns.
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Mining the Web's Link Structures

Problems with the Web linkage structure
. Not every hyperlink represents an endorsement
o Other purposes are for navigation or for paid
advertisements
o If the majority of hyperlinks are for endorsement,
the collective opinion will still dominate
. One authority will seldom have its Web page point to
its rival authorities in the same field
. Authoritative pages are seldom particularly
descriptive
Hub

. Set of Web pages that provides collections of links to
authorities
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Mining the Web's Link Structures

Finding authoritative Web pages

Retrieving pages that are not only relevant, but also of
high quality, or authoritative on the topic

Hyperlinks can infer the notion of authority

. The Web consists not only of pages, but also of
hyperlinks pointing from one page to another

. These hyperlinks contain an enormous amount of
latent human annotation

. A hyperlink pointing to another Web page can be
considered as the author's endorsement (gestatigung) Of
the other page
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HITS (Hyperlink-Induced Topic Search)

Explore interactions between hubs and authoritative pages
Use an index-based search engine to form the root set
Many of these pages are presumably relevant to the search topic

. Some of them should contain links to most of the prominent
authorities

Expand the root set into a base set

. Include all of the pages that the root-set pages link to, and all of
the pages that link to a page in the root set, up to a designated
size cutoff

Apply weight-propagation

. An iterative process that determines numerical estimates of hub

and authority weights
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Systems Based on HITS

. Output a short list of the pages with large hub
weights, and the pages with large authority weights for
the given search topic

Systems based on the HITS algorithm

. Clever, Google: achieve better quality search results
than those generated by term-index engines such as
AltaVista and those created by human ontologists such
as Yahoo!

Difficulties from ignoring textual contexts
. Drifting: when hubs contain multiple topics

. Topic hijacking: when many pages from a single Web
site point to the same single popular site
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Multilayered Web Information Base

Layer,: the Web itself
Layer,: the Web page descriptor layer
. Contains descriptive information for pages on the Web

. An abstraction of Layer,: substantially smaller but still
rich enough to preserve most of the interesting,
general information

. Organized into dozens of semistructured classes

o document, person, organization, ads, directory,
sales, software, game, stocks, library_catalog,
geographic_data, scientific_data, etc.

Layer, and up: various Web directory services constructed
on top of Layer;

. provide multidimensional, application-specific services
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Automatic Classification of Web Documents

. Assign a class label to each document from a set of
predefined topic categories

Based on a set of examples of preclassified documents
Example

. Use Yahoo!'s taxonomy and its associated
documents as training and test sets

. Derive a Web document classification scheme

. Use the scheme classify new Web documents by
assigning categories from the same taxonomy

Keyword-based document classification methods
Statistical models
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Multiple Layered Web Architecture

Layer,



RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 7037

Mining the World-Wide Web

| Layer-0: Primitive data |

| Layer-1: dozen database relations representing types of objects (metadata)|

document, organization, person, software, game, map, image, ...

* document(file_addr, authors, title, publication, publication_date, abstract, language,
table_of contents, category description, keywords, index, multimedia_attached, num_pages,
format, first_paragraphs, size_doc, timestamp, access_frequency, links out,...)

« person(last_name, first name, home page addr, position, picture_attached, phone, e-mail,
office_address, education, research_interests, publications, size_of home_page, timestamp,
access_frequency, ...)

« image(image addr, author, title, publication_date, category description, keywords, size,
width, height, duration, format, parent pages, colour_histogram, Colour_layout,
Texture layout, Movement_vector, localisation_vector, timestamp, access_frequency, ...)

RWTH Aachen, Informatik 9, Prof. Seidl Data Mining Algorithms — 7039

XML and Web Mining

XML can help to extract the correct descriptors
. Standardization would greatly facilitate information extraction

<NAME> eXtensible Markup Language</NAME>
<RECOM>World-Wide Web Consortium</RECOM>
<SINCE>1998</SINCE>
<VERSION>1.0</VERSION>

<DESC>Meta language that facilitates more meaningful and
precise declarations of document content</DESC>

<HOW >Definition of new tags and DTDs</HOW>

. Potential problem
o XML can help solve heterogeneity for vertical applications, but the
freedom to define tags can make horizontal applications on the
Web more heterogeneous
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Mining the World-Wide Web

| Layer-2: simplification of layer-1

*doc_brief(file_addr, authors, title, publication, publication_date, abstract, language,
category description, key words, major_index, num_pages, format, size_doc, access_frequency,
links out)

eperson_brief (last name, first name, publications,affiliation, e-mail, research_interests,
size_home page, access_frequency)

| Layer-3: generalization of layer-2

ecs_doc(file addr, authors, title, publication, publication_date, abstract, language,
category_description, keywords, num_pages, form, size doc, links_out)

*doc_summary(affiliation, field, publication_year, count, first_author_list, file_addr_list)

*doc_author_brief(file addr, authors, affiliation, title, publication, pub_date,
category_description, keywords, num_pages, format, size doc, links out)

eperson_summary(affiliation, research_interest, year, num_publications, count)
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Benefits of Multi-Layer Meta-Web

. Benefits:
. Multi-dimensional Web info summary analysis
. Approximate and intelligent query answering
. Web high-level query answering (WebSQL, WebML)
. Web content and structure mining
. Observing the dynamics/evolution of the Web
. Is it realistic to construct such a meta-Web?
. Benefits even if it is partially constructed

. Benefits may justify the cost of tool development,
standardization and partial restructuring
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Web Usage Mining

Mining Web log records to discover user access patterns
of Web pages

- Applications
. Target potential customers for electronic commerce

. Enhance the quality and delivery of Internet
information services to the end user

. Improve Web server system performance
. Identify potential prime advertisement locations
Web logs provide rich information about Web dynamics

. Typical Web log entry includes the URL requested, the
IP address from which the request originated, and a
timestamp
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Mining the World-Wide Web

Design of a Web Log Miner

. Web log is filtered to generate a relational database
. A data cube is generated form database

. OLAP is used to drill-down and roll-up in the cube

. OLAM is used for mining interesting knowledge

Knowledge
JQ -
cube
¥ %) .’

Web log Database Data Cube Sliced and diced

Data Cleaning Data Cube

Creation
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Techniques for Web usage mining

Construct multidimensional view on the Weblog database

. Perform multidimensional OLAP analysis to find the top
N users, top NV accessed Web pages, most frequently
accessed time periods, etc.

Perform data mining on Weblog records

. Find association patterns, sequential patterns, and
trends of Web accessing

. May need additional information,e.g., user browsing
sequences of the Web pages in the Web server buffer

Conduct studies to

. Analyze system performance, improve system design by
Web caching, Web page prefetching, and Web page
swapping
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Chapter 7. Mining Complex Types of Data

Multidimensional analysis and descriptive mining of
complex data objects

Mining text databases
Mining the World-Wide Web

Summary
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Summary

- Mining complex types of data include object data, spatial
data, multimedia data, time-series data, text data, and
Web data

- Text mining goes beyond keyword-based and similarity-
based information retrieval and discovers knowledge
from semi-structured data using methods like keyword-
based association and document classification

- Web mining includes mining Web link structures to
identify authoritative Web pages, the automatic
classification of Web documents, building a multilayered
Web information base, and Weblog mining
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